Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Rybin is active.

Publication


Featured researches published by Vladimir Rybin.


Nature | 2002

Functional organization of the yeast proteome by systematic analysis of protein complexes

Anne-Claude Gavin; Markus Bösche; Roland Krause; Paola Grandi; Martina Marzioch; Andreas Bauer; Jörg Schultz; Jens Rick; Anne-Marie Michon; Cristina-Maria Cruciat; Marita Remor; Christian Höfert; Malgorzata Schelder; Miro Brajenovic; Heinz Ruffner; Alejandro Merino; Karin Klein; Manuela Hudak; David Dickson; Tatjana Rudi; Volker Gnau; Angela Bauch; Sonja Bastuck; Bettina Huhse; Christina Leutwein; Marie-Anne Heurtier; Richard R. Copley; Angela Edelmann; Erich Querfurth; Vladimir Rybin

Most cellular processes are carried out by multiprotein complexes. The identification and analysis of their components provides insight into how the ensemble of expressed proteins (proteome) is organized into functional units. We used tandem-affinity purification (TAP) and mass spectrometry in a large-scale approach to characterize multiprotein complexes in Saccharomyces cerevisiae. We processed 1,739 genes, including 1,143 human orthologues of relevance to human biology, and purified 589 protein assemblies. Bioinformatic analysis of these assemblies defined 232 distinct multiprotein complexes and proposed new cellular roles for 344 proteins, including 231 proteins with no previous functional annotation. Comparison of yeast and human complexes showed that conservation across species extends from single proteins to their molecular environment. Our analysis provides an outline of the eukaryotic proteome as a network of protein complexes at a level of organization beyond binary interactions. This higher-order map contains fundamental biological information and offers the context for a more reasoned and informed approach to drug discovery.


Cell | 1997

A novel Rab5 GDP/GTP exchange factor complexed to Rabaptin-5 links nucleotide exchange to effector recruitment and function

Hisanori Horiuchi; Roger Lippé; Heidi M. McBride; Mariantonietta Rubino; Philip G. Woodman; Harald Stenmark; Vladimir Rybin; Matthias Wilm; Keith Ashman; Matthias Mann; Marino Zerial

The small GTPase Rab5 plays an essential role in endocytic traffic. Rab GDP dissociation inhibitor delivers Rab5 to the membrane, where a nucleotide exchange activity allows recruitment of an effector protein, Rabaptin-5. Here we uncovered a novel 60 kDa Rab5-binding protein, Rabex-5. Rabex-5 forms a tight physical complex with Rabaptin-5, and this complex is essential for endocytic membrane fusion. Sequencing of mammalian Rabex-5 by nanoelectrospray mass spectrometry and cloning revealed striking homology to Vps9p, a yeast protein implicated in endocytic traffic. Rabex-5 displays GDP/GTP exchange activity on Rab5 upon delivery of the GTPase to the membrane. This demonstrates that a soluble exchange factor coupled to a Rab effector translocates from cytosol to the membrane, where the complex stabilizes the GTPase in the active state.


Cell | 1999

Oligomeric Complexes Link Rab5 Effectors with NSF and Drive Membrane Fusion via Interactions between EEA1 and Syntaxin 13

Heidi M McBride; Vladimir Rybin; Carol Murphy; Angelika Giner; Rohan D. Teasdale; Marino Zerial

SNAREs and Rab GTPases cooperate in vesicle transport through a mechanism yet poorly understood. We now demonstrate that the Rab5 effectors EEA1 and Rabaptin-5/Rabex-5 exist on the membrane in high molecular weight oligomers, which also contain NSF. Oligomeric assembly is modulated by the ATPase activity of NSF. Syntaxin 13, the t-SNARE required for endosome fusion, is transiently incorporated into the large oligomers via direct interactions with EEA1. This interaction is required to drive fusion, since both dominant-negative EEA1 and synthetic peptides encoding the FYVE Zn2+ finger hinder the interaction and block fusion. We propose a novel mechanism whereby oligomeric EEA1 and NSF mediate the local activation of syntaxin 13 upon membrane tethering and, by analogy with viral fusion proteins, coordinate the assembly of a fusion pore.


Molecular Cell | 2002

90S Pre-Ribosomes Include the 35S Pre-rRNA, the U3 snoRNP, and 40S Subunit Processing Factors but Predominantly Lack 60S Synthesis Factors

Paola Grandi; Vladimir Rybin; Jochen Baßler; Elisabeth Petfalski; Daniela Strauß; Martina Marzioch; Thorsten Schäfer; Bernhard Kuster; Herbert Tschochner; David Tollervey; Anne-Claude Gavin; Ed Hurt

We report the characterization of early pre-ribosomal particles. Twelve TAP-tagged components each showed nucleolar localization, sedimented at approximately 90S on sucrose gradients, and coprecipitated both the 35S pre-rRNA and the U3 snoRNA. Thirty-five non-ribosomal proteins were coprecipitated, including proteins associated with U3 (Nop56p, Nop58p, Sof1p, Rrp9, Dhr1p, Imp3p, Imp4p, and Mpp10p) and other factors required for 18S rRNA synthesis (Nop14p, Bms1p, and Krr1p). Mutations in components of the 90S pre-ribosomes impaired 40S subunit assembly and export. Strikingly, few components of recently characterized pre-60S ribosomes were identified in the 90S pre-ribosomes. We conclude that the 40S synthesis machinery predominately associates with the 35S pre-rRNA factors, whereas factors required for 60S subunit synthesis largely bind later, showing an unexpected dichotomy in binding.


Science | 2009

Proteome Organization in a Genome-Reduced Bacterium

Sebastian Kuehner; Vera van Noort; Matthew J. Betts; Alejandra Leo-Macias; Claire Batisse; Michaela Rode; Takuji Yamada; Tobias Maier; Samuel L. Bader; Pedro Beltran-Alvarez; Daniel Castaño-Díez; Wei-Hua Chen; Damien P. Devos; Marc Gueell; Tomás Norambuena; Ines Racke; Vladimir Rybin; Alexander Schmidt; Eva Yus; Ruedi Aebersold; Richard Herrmann; Bettina Boettcher; Achilleas S. Frangakis; Robert B. Russell; Luis Serrano; Peer Bork; Anne-Claude Gavin

Simply Mycoplasma The bacterium Mycoplasma pneumoniae, a human pathogen, has a genome of reduced size and is one of the simplest organisms that can reproduce outside of host cells. As such, it represents an excellent model organism in which to attempt a systems-level understanding of its biological organization. Now three papers provide a comprehensive and quantitative analysis of the proteome, the metabolic network, and the transcriptome of M. pneumoniae (see the Perspective by Ochman and Raghavan). Anticipating what might be possible in the future for more complex organisms, Kühner et al. (p. 1235) combine analysis of protein interactions by mass spectrometry with extensive structural information on M. pneumoniae proteins to reveal how proteins work together as molecular machines and map their organization within the cell by electron tomography. The manageable genome size of M. pneumoniae allowed Yus et al. (p. 1263) to map the metabolic network of the organism manually and validate it experimentally. Analysis of the network aided development of a minimal medium in which the bacterium could be cultured. Finally, G‡ell et al. (p. 1268) applied state-of-the-art sequencing techniques to reveal that this “simple” organism makes extensive use of noncoding RNAs and has exon- and intron-like structure within transcriptional operons that allows complex gene regulation resembling that of eukaryotes. The simplified proteome of a bacterium provides insight into the organization of proteins into molecular machines. The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification–mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.


Nature | 2000

The Eps8 protein coordinates EGF receptor signalling through Rac and trafficking through Rab5

Letizia Lanzetti; Vladimir Rybin; Maria Grazia Malabarba; Savvas Christoforidis; Giorgio Scita; Marino Zerial; Pier Paolo Di Fiore

How epidermal growth factor receptor (EGFR) signalling is linked to EGFR trafficking is largely unknown. Signalling and trafficking involve small GTPases of the Rho and Rab families, respectively. But it remains unknown whether the signalling relying on these two classes of GTPases is integrated, and, if it is, what molecular machinery is involved. Here we report that the protein Eps8 connects these signalling pathways. Eps8 is a substrate of the EGFR, which is held in a complex with Sos1 by the adaptor protein E3b1 (ref. 2), thereby mediating activation of Rac. Through its src homology-3 domain, Eps8 interacts with RN-tre. We show that RN-tre is a Rab5 GTPase-activating protein, whose activity is regulated by the EGFR. By entering in a complex with Eps8, RN-tre acts on Rab5 and inhibits internalization of the EGFR. Furthermore, RN-tre diverts Eps8 from its Rac-activating function, resulting in the attenuation of Rac signalling. Thus, depending on its state of association with E3b1 or RN-tre, Eps8 participates in both EGFR signalling through Rac, and trafficking through Rab5.


Nature Structural & Molecular Biology | 2000

Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli.

Andrew A. McCarthy; Peter W. Haebel; Anneli Törrönen; Vladimir Rybin; Edward N. Baker; Peter Metcalf

DsbC is one of five Escherichia coli proteins required for disulfide bond formation and is thought to function as a disulfide bond isomerase during oxidative protein folding in the periplasm. DsbC is a 2 × 23 kDa homodimer and has both protein disulfide isomerase and chaperone activity. We report the 1.9 Å resolution crystal structure of oxidized DsbC where both Cys-X-X-Cys active sites form disulfide bonds. The molecule consists of separate thioredoxin-like domains joined via hinged linker helices to an N-terminal dimerization domain. The hinges allow relative movement of the active sites, and a broad uncharged cleft between them may be involved in peptide binding and DsbC foldase activities.


The EMBO Journal | 1998

Distinct Rab-binding domains mediate the interaction of Rabaptin-5 with GTP-bound rab4 and rab5

Gaetano Vitale; Vladimir Rybin; Savvas Christoforidis; Per Öve Thornqvist; Mary W. McCaffrey; Harald Stenmark; Marino Zerial

Rabaptin‐5 functions as an effector for the small GTPase Rab5, a regulator of endocytosis and early endosome fusion. We have searched for structural determinants that confer functional specificity on Rabaptin‐5. Here we report that native cytosolic Rabaptin‐5 is present in a homodimeric state and dimerization depends upon the presence of its coiled‐coil predicted sequences. A 73 residue C‐terminal region of Rabaptin‐5 is necessary and sufficient both for the interaction with Rab5 and for Rab5‐dependent recruitment of the protein on early endosomes. Surprisingly, we uncovered the presence of an additional Rab‐binding domain at the N‐terminus of Rabaptin‐5. This domain mediates the direct interaction with the GTP‐bound form of Rab4, a small GTPase that has been implicated in recycling from early endosomes to the cell surface. Based on these results, we propose that Rabaptin‐5 functions as a molecular linker between two sequentially acting GTPases to coordinate endocytic and recycling traffic.


The EMBO Journal | 2006

HDAC6–p97/VCP controlled polyubiquitin chain turnover

Cyril Boyault; Benoit Gilquin; Yu Zhang; Vladimir Rybin; Elspeth F. Garman; Wolfram Meyer-Klaucke; Patrick Matthias; Christoph W. Müller; Saadi Khochbin

HDAC6 is a unique cytoplasmic deacetylase capable of interacting with ubiquitin. Using a combination of biophysical, biochemical and biological approaches, we have characterized the ubiquitin‐binding domain of HDAC6, named ZnF‐UBP, and investigated its biological functions. These studies show that the three Zn ion‐containing HDAC6 ZnF‐UBP domain presents the highest known affinity for ubiquitin monomers and mediates the ability of HDAC6 to negatively control the cellular polyubiquitin chain turnover. We further show that HDAC6‐interacting chaperone, p97/VCP, dissociates the HDAC6–ubiquitin complexes and counteracts the ability of HDAC6 to promote the accumulation of polyubiquitinated proteins. We propose that a finely tuned balance of HDAC6 and p97/VCP concentrations determines the fate of ubiquitinated misfolded proteins: p97/VCP would promote protein degradation and ubiquitin turnover, whereas HDAC6 would favour the accumulation of ubiquitinated protein aggregates and inclusion body formation.


Nature Structural & Molecular Biology | 2002

Computer-aided design of a PDZ domain to recognize new target sequences.

Jose Reina; Emmanuel Lacroix; Scott D. Hobson; Gregorio Fernández-Ballester; Vladimir Rybin; Markus S. Schwab; Luis Serrano; Cayetano Gonzalez

PDZ domains are small globular domains that recognize the last 4–7 amino acids at the C-terminus of target proteins. The specificity of the PDZ–ligand recognition is due to side chain–side chain interactions, as well as the positioning of an α-helix involved in ligand binding. We have used computer-aided protein design to produce mutant versions of a Class I PDZ domain that bind to novel Class I and Class II target sequences both in vitro and in vivo, thus providing an alternative to primary antibodies in western blotting, affinity chromatography and pull-down experiments. Our results suggest that by combining different backbone templates with computer-aided protein design, PDZ domains could be engineered to specifically recognize a large number of proteins.

Collaboration


Dive into the Vladimir Rybin's collaboration.

Top Co-Authors

Avatar

Christoph W. Müller

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne-Claude Gavin

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Klaus Scheffzek

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peer Bork

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katia Zanier

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge