Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Saudek is active.

Publication


Featured researches published by Vladimir Saudek.


Science | 2007

The Obesity-Associated FTO Gene Encodes a 2-Oxoglutarate–Dependent Nucleic Acid Demethylase

Thomas Gerken; Christophe Girard; Yi-Chun Loraine Tung; Celia J. Webby; Vladimir Saudek; Kirsty S. Hewitson; Giles S. H. Yeo; Michael A. McDonough; Sharon Cunliffe; Luke A. McNeill; Juris Galvanovskis; Patrik Rorsman; Peter Robins; Xavier Prieur; Anthony P. Coll; Marcella Ma; Zorica Jovanovic; I. Sadaf Farooqi; Barbara Sedgwick; Inês Barroso; Tomas Lindahl; Chris P. Ponting; Frances M. Ashcroft; Stephen O'Rahilly; Christopher J. Schofield

Variants in the FTO (fat mass and obesity associated) gene are associated with increased body mass index in humans. Here, we show by bioinformatics analysis that FTO shares sequence motifs with Fe(II)- and 2-oxoglutarate–dependent oxygenases. We find that recombinant murine Fto catalyzes the Fe(II)- and 2OG-dependent demethylation of 3-methylthymine in single-stranded DNA, with concomitant production of succinate, formaldehyde, and carbon dioxide. Consistent with a potential role in nucleic acid demethylation, Fto localizes to the nucleus in transfected cells. Studies of wild-type mice indicate that Fto messenger RNA (mRNA) is most abundant in the brain, particularly in hypothalamic nuclei governing energy balance, and that Fto mRNA levels in the arcuate nucleus are regulated by feeding and fasting. Studies can now be directed toward determining the physiologically relevant FTO substrate and how nucleic acid methylation status is linked to increased fat mass.


American Journal of Human Genetics | 2009

Loss-of-Function Mutation in the Dioxygenase-Encoding FTO Gene Causes Severe Growth Retardation and Multiple Malformations

Sarah Boissel; Orit Reish; Karine Proulx; Hiroko Kawagoe-Takaki; Barbara Sedgwick; Giles S. H. Yeo; David Meyre; Christelle Golzio; Florence Molinari; Noman Kadhom; Heather Etchevers; Vladimir Saudek; I. Sadaf Farooqi; Philippe Froguel; Tomas Lindahl; Stephen O'Rahilly; Arnold Munnich; Laurence Colleaux

FTO is a nuclear protein belonging to the AlkB-related non-haem iron- and 2-oxoglutarate-dependent dioxygenase family. Although polymorphisms within the first intron of the FTO gene have been associated with obesity, the physiological role of FTO remains unknown. Here we show that a R316Q mutation, inactivating FTO enzymatic activity, is responsible for an autosomal-recessive lethal syndrome. Cultured skin fibroblasts from affected subjects showed impaired proliferation and accelerated senescence. These findings indicate that FTO is essential for normal development of the central nervous and cardiovascular systems in human and establish that a mutation in a human member of the AlkB-related dioxygenase family results in a severe polymalformation syndrome.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression

Jane C. Goodall; Changxin Wu; Yongsheng Zhang; Louise McNeill; Lou Ellis; Vladimir Saudek; J. S. Hill Gaston

The endoplasmic reticulum (ER) stress response detects malfunctions in cellular physiology, and microbial pattern recognition receptors recognize external threats posed by infectious agents. This study has investigated whether proinflammatory cytokine expression by monocyte-derived dendritic cells is affected by the induction of ER stress. Activation of ER stress, in combination with Toll-like receptor (TLR) agonists, markedly enhanced expression of mRNA of the unique p19 subunit of IL-23, and also significantly augmented secretion of IL-23 protein. These effects were not seen for IL-12 secretion. The IL-23 gene was found to be a target of the ER stress-induced transcription factor C/EBP homologous protein (CHOP), which exhibited enhanced binding in the context of both ER stress and TLR stimulation. Knockdown of CHOP in U937 cells significantly reduced the synergistic effects of TLR and ER stress on IL-23p19 expression, but did not affect expression of other LPS-responsive genes. The integration of ER stress signals and the requirement for CHOP in the induction of IL-23 responses was also investigated in a physiological setting: infection of myeloid cells with Chlamydia trachomatis resulted in the expression of CHOP mRNA and induced the binding of CHOP to the IL-23 promoter. Furthermore, knockdown of CHOP significantly reduced the expression of IL-23 in response to this intracellular bacterium. Therefore, the effects of pathogens and other environmental factors on ER stress can profoundly affect the nature of innate and adaptive immune responses.


Embo Molecular Medicine | 2009

Partial lipodystrophy and insulin resistant diabetes in a patient with a homozygous nonsense mutation in CIDEC

Oscar Rubio-Cabezas; Vishwajeet Puri; Incoronata Murano; Vladimir Saudek; Robert K. Semple; Satya Dash; Caroline S S Hyden; William Bottomley; Corinne Vigouroux; Jocelyne Magré; Philippa Raymond-Barker; Peter R. Murgatroyd; Anil Chawla; Jeremy N. Skepper; V. Krishna Chatterjee; Sara Suliman; Ann Marie Patch; Anil K. Agarwal; Abhimanyu Garg; Inês Barroso; Saverio Cinti; Michael P. Czech; Jesús Argente; Stephen O'Rahilly; David B. Savage

Lipodystrophic syndromes are characterized by adipose tissue deficiency. Although rare, they are of considerable interest as they, like obesity, typically lead to ectopic lipid accumulation, dyslipidaemia and insulin resistant diabetes. In this paper we describe a female patient with partial lipodystrophy (affecting limb, femorogluteal and subcutaneous abdominal fat), white adipocytes with multiloculated lipid droplets and insulin‐resistant diabetes, who was found to be homozygous for a premature truncation mutation in the lipid droplet protein cell death‐inducing Dffa‐like effector C (CIDEC) (E186X). The truncation disrupts the highly conserved CIDE‐C domain and the mutant protein is mistargeted and fails to increase the lipid droplet size in transfected cells. In mice, Cidec deficiency also reduces fat mass and induces the formation of white adipocytes with multilocular lipid droplets, but in contrast to our patient, Cidec null mice are protected against diet‐induced obesity and insulin resistance. In addition to describing a novel autosomal recessive form of familial partial lipodystrophy, these observations also suggest that CIDEC is required for unilocular lipid droplet formation and optimal energy storage in human fat.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease

Felicity Payne; Koini Lim; Amandine Girousse; Rebecca J. Brown; Nora Kory; Ann Robbins; Yali Xue; Alison Sleigh; Elaine Cochran; Claire Adams; Arundhati Dev Borman; David Russel-Jones; Phillip Gorden; Robert Semple; Vladimir Saudek; Stephen O’Rahilly; Tobias C. Walther; Inês Barroso; David B. Savage

Significance The characterization of rare monogenic human disorders can and has yielded unique biological insights. Our phenotypic description and functional characterization of human loss-of-function mutations in PCYT1A is both clinically important for patients and their families afflicted with this rare but serious metabolic disease and biologically helpful in advancing understanding of the physiological consequences of impaired PCYT1A activity in humans. Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.


Molecular metabolism | 2013

The human lipodystrophy protein seipin is an ER membrane adaptor for the adipogenic PA phosphatase lipin 1.

M.F. Michelle Sim; Rowena J. Dennis; Evelyne M. Aubry; Nardev Ramanathan; Hiroshi Sembongi; Vladimir Saudek; Daisuke Ito; Stephen O'Rahilly; Symeon Siniossoglou; Justin J. Rochford

Disruption of the gene BSCL2 causes a severe, generalised lipodystrophy, demonstrating the critical role of its protein product, seipin, in human adipose tissue development. Seipin is essential for adipocyte differentiation, whilst the study of seipin in non-adipose cells has suggested a role in lipid droplet formation. However, its precise molecular function remains poorly understood. Here we demonstrate that seipin can inducibly bind lipin 1, a phosphatidic acid (PA) phosphatase important for lipid synthesis and adipogenesis. Knockdown of seipin during early adipogenesis decreases the association of lipin 1 with membranes and increases the accumulation of its substrate PA. Conversely, PA levels are reduced in differentiating cells by overexpression of wild-type seipin but not by expression of a mutated seipin that is unable to bind lipin 1. Together our data identify lipin as the first example of a seipin-interacting protein and reveals a novel molecular function for seipin in developing adipocytes.


Journal of Clinical Investigation | 2014

Hypomorphism in human NSMCE2 linked to primordial dwarfism and insulin resistance

Felicity Payne; Rita Colnaghi; Nuno Rocha; Asha Seth; Julie Harris; Gillian Carpenter; William Bottomley; Eleanor Wheeler; Stephen T. C. Wong; Vladimir Saudek; David B. Savage; Stephen O’Rahilly; Jean-Claude Carel; Inês Barroso; Mark O’Driscoll; Robert K. Semple

Structural maintenance of chromosomes (SMC) complexes are essential for maintaining chromatin structure and regulating gene expression. Two the three known SMC complexes, cohesin and condensin, are important for sister chromatid cohesion and condensation, respectively; however, the function of the third complex, SMC5-6, which includes the E3 SUMO-ligase NSMCE2 (also widely known as MMS21) is less clear. Here, we characterized 2 patients with primordial dwarfism, extreme insulin resistance, and gonadal failure and identified compound heterozygous frameshift mutations in NSMCE2. Both mutations reduced NSMCE2 expression in patient cells. Primary cells from one patient showed increased micronucleus and nucleoplasmic bridge formation, delayed recovery of DNA synthesis, and reduced formation of foci containing Bloom syndrome helicase (BLM) after hydroxyurea-induced replication fork stalling. These nuclear abnormalities in patient dermal fibroblast were restored by expression of WT NSMCE2, but not a mutant form lacking SUMO-ligase activity. Furthermore, in zebrafish, knockdown of the NSMCE2 ortholog produced dwarfism, which was ameliorated by reexpression of WT, but not SUMO-ligase-deficient NSMCE. Collectively, these findings support a role for NSMCE2 in recovery from DNA damage and raise the possibility that loss of its function produces dwarfism through reduced tolerance of replicative stress.


Journal of Biological Chemistry | 2016

Conserved Amphipathic Helices Mediate Lipid Droplet Targeting of Perilipins 1-3.

Emily R Rowe; Michael L. Mimmack; Antonio Daniel Barbosa; Afreen Haider; Iona Isaac; Myriam M. Ouberai; Abdou Rachid Thiam; Satish Patel; Vladimir Saudek; Symeon Siniossoglou; David B. Savage

Perilipins (PLINs) play a key role in energy storage by orchestrating the activity of lipases on the surface of lipid droplets. Failure of this activity results in severe metabolic disease in humans. Unlike all other lipid droplet-associated proteins, PLINs localize almost exclusively to the phospholipid monolayer surrounding the droplet. To understand how they sense and associate with the unique topology of the droplet surface, we studied the localization of human PLINs in Saccharomyces cerevisiae, demonstrating that the targeting mechanism is highly conserved and that 11-mer repeat regions are sufficient for droplet targeting. Mutations designed to disrupt folding of this region into amphipathic helices (AHs) significantly decreased lipid droplet targeting in vivo and in vitro. Finally, we demonstrated a substantial increase in the helicity of this region in the presence of detergent micelles, which was prevented by an AH-disrupting missense mutation. We conclude that highly conserved 11-mer repeat regions of PLINs target lipid droplets by folding into AHs on the droplet surface, thus enabling PLINs to regulate the interface between the hydrophobic lipid core and its surrounding hydrophilic environment.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Perilipins 2 and 3 lack a carboxy-terminal domain present in perilipin 1 involved in sequestering ABHD5 and suppressing basal lipolysis

Satish Patel; Wei Yang; Kristina Kozusko; Vladimir Saudek; David B. Savage

Significance Lipolysis refers to the hydrolysis of triacylglycerol stored within lipid droplets. It is an essential step in the catabolism of triacylglycerol in all cells. Within adipocytes, the regulation is highly dynamic, whereas in other cell types basal lipolytic flux is less effectively suppressed and lipolysis is not as dramatically stimulated. These differences reflect the obviously different functions of adipose tissue, the body’s principle energy store, compared with other sites such as the liver or skeletal muscle, where lipids may be exported within lipoproteins or oxidized. Our data suggest that the molecular differences between perilipins1, 2, and 3 can largely account for these functional differences and thus provide a plausible hypothesis for their preservation in evolution. Lipid droplets (LDs) are a conserved feature of most organisms. Vertebrate adipocytes have evolved to efficiently store and release lipids for the whole organism from a single droplet. Perilipin 1, the most abundant lipid-coat protein in adipocytes, plays a key role in regulating lipolysis. In other tissues such as liver and muscle, LDs serve very different biological functions, buffering surplus lipids for subsequent oxidation or export. These tissues express perilipins 2 or 3, rather than perilipin 1. We sought to understand the role of perilipins 2 and 3 in regulating basal lipolysis. Bimolecular fluorescence complementation studies suggested that whereas perilipin 1 prevents the activation of adipose tissue triacylglycerol lipase by its coactivator, AB-hydrolase domain containing-5 (ABHD5), perilipins 2 and 3 do so less effectively. These differences are mediated by a conserved region within the carboxy terminus of perilipin 1 that binds and stabilizes ABHD5 by retarding its degradation by the proteosome. Chimeric proteins generated by fusing the carboxy terminus of perilipin 1 to the amino terminus of perilipins 2 or 3 stabilize ABHD5 and suppress basal lipolysis more effectively than WT perilipins 2 or 3. Furthermore, knockdown of perilipin 1 in adipocytes leads to replacement of perilipin 2 on LDs. In these cells we observed reduced ABHD5 expression and LD localization and a corresponding increase in basal lipolysis. Collectively these data suggest that whereas perilipin 1 potently suppresses basal lipolysis in adipocytes, perilipins 2 and 3 facilitate higher rates of basal lipolysis in other tissues where constitutive traffic of fatty acids via LDs is a necessary step in their metabolism.


Proceedings of the National Academy of Sciences of the United States of America | 2002

SKIP is an indispensable factor for Caenorhabditis elegans development

Marta Kostrouchová; Daniel Housa; Zdenek Kostrouch; Vladimir Saudek; J. E. Rall

SKI-binding protein (SKIP) is a transcription cofactor present in all eukaryotes. Here we show that SKIP is a unique protein that is required for Caenorhabditis elegans viability and development. Expression of CeSKIP (skp-1) assayed by RT-PCR and by GFP fluorescence in transgenic lines starts in embryos and continues to adulthood. Loss of CeSKIP activity by RNA-mediated inhibition results in early embryonic arrest similar to that seen following inhibition of RNA polymerase II. RNA polymerase II phosphorylation appears normal early in CeSKIP RNA-mediated inhibition treated embryos although the expression of several embryonic GFP reporter genes is severely restricted or absent. Our data suggest that CeSKIP is an essential component of many RNA polymerase II transcription complexes and is indispensable for C. elegans development.

Collaboration


Dive into the Vladimir Saudek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Inês Barroso

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koini Lim

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Satish Patel

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nuno Rocha

University of Cambridge

View shared research outputs
Researchain Logo
Decentralizing Knowledge