Vladimir V. Didenko
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladimir V. Didenko.
Circulation | 1998
Biykem Bozkurt; Scott B. Kribbs; Fred J. Clubb; Lloyd H. Michael; Vladimir V. Didenko; Peter J. Hornsby; Yukihiro Seta; Hakan Oral; Francis G. Spinale; Douglas L. Mann
BACKGROUND Although patients with heart failure express elevated circulating levels of tumor necrosis factor-alpha (TNF-alpha) in their peripheral circulation, the structural and functional effects of circulating levels of pathophysiologically relevant concentrations of TNF-alpha on the heart are not known. METHODS AND RESULTS Osmotic infusion pumps containing either diluent or TNF-alpha were implanted into the peritoneal cavity of rats. The rate of TNF-alpha infusion was titrated to obtain systemic levels of biologically active TNF-alpha comparable to those reported in patients with heart failure (approximately 80 to 100 U/mL), and the animals were examined serially for 15 days. Two-dimensional echocardiography was used to assess changes in left ventricular (LV) structure (remodeling) and LV function. Video edge detection was used to assess isolated cell mechanics, and standard histological techniques were used to assess changes in the volume composition of LV cardiac myocytes and the extracellular matrix. The reversibility of cytokine-induced effects was determined either by removal of the osmotic infusion pumps on day 15 or by treatment of the animals with a soluble TNF-alpha antagonist (TNFR:Fc). The results of this study show that a continuous infusion of TNF-alpha led to a time-dependent depression in LV function, cardiac myocyte shortening, and LV dilation that were at least partially reversible by removal of the osmotic infusion pumps or treatment of the animals with TNFR:Fc. CONCLUSIONS These studies suggest that pathophysiologically relevant concentrations of TNF-alpha are sufficient to mimic certain aspects of the phenotype observed in experimental and clinical models of heart failure.
Circulation | 2000
Bo Ding; Robert L. Price; Edie C. Goldsmith; Thomas K. Borg; Xinhua Yan; Pamela S. Douglas; Ellen O. Weinberg; Jozef Bartunek; Thomas E. Thielen; Vladimir V. Didenko; Beverly H. Lorell
BACKGROUND To determine potential mechanisms of the transition from hypertrophy to very early failure, we examined apoptosis in a model of ascending aortic stenosis (AS) in male FVB/n mice. METHODS AND RESULTS Compared with age-matched controls, 4-week and 7-week AS animals (n=12 to 16 per group) had increased ratios of left ventricular weight to body weight (4.7+/-0.7 versus 3.1+/-0.2 and 5. 7+/-0.4 versus 2.7+/-0.1 mg/g, respectively, P<0.05) with similar body weights. Myocyte width was also increased in 4-week and 7-week AS mice compared with controls (19.0+/-0.8 and 25.2+/-1.8 versus 14. 1+/-0.5 microm, respectively, P<0.01). By 7 weeks, AS myocytes displayed branching with distinct differences in intercalated disk size and staining for beta(1)-integrin on both cell surface and adjacent extracellular matrix. In vivo left ventricular systolic developed pressure per gram as well as endocardial fractional shortening were similar in 4-week AS and controls but depressed in 7-week AS mice. Myocyte apoptosis estimated by in situ nick end-labeling (TUNEL) was extremely rare in 4-week AS and control mice; however, a low prevalence of TUNEL-positive myocytes and DNA laddering were detected in 7-week AS mice. The specificity of TUNEL labeling was confirmed by in situ ligation of hairpin oligonucleotides. CONCLUSIONS Our findings indicate that myocyte apoptosis develops during the transition from hypertrophy to early failure in mice with chronic biomechanical stress and support the hypothesis that the disruption of normal myocyte anchorage to adjacent extracellular matrix and cells, a process called anoikis, may signal apoptosis.
Journal of Clinical Investigation | 1996
Vladimir V. Didenko; Xiangdong Wang; Lianqing Yang; Peter J. Hornsby
p21(WAF1/CIP1/SDI1), an inhibitor of cyclin-dependent kinases, is expressed at varying levels in human adrenal glands removed during surgery or organ recovery. In glands with p21 mRNA, nuclear p21 immunoreactivity, which was occasionally extensive, colocalized with p53 immunoreactivity and DNA damage, as evidenced by in situ end-labeling. Many cells showed morphological features of apoptosis when observed by fluorescent DNA dye staining and electron microscopy. This pattern was also associated with high levels of cytoplasmic heat shock protein 70. To address the question of the origin of p21 expression in some human adrenal glands, rat adrenal glands were subjected to 30 min of ischemia followed by 8 h of reperfusion. Cells with nuclear p21 and p53 appeared in the adrenal cortex together with DNA damage detected by in situ end-labeling. Nuclear p21 immunoreactivity was also produced in adrenal tissue fragments incubated at 37 degrees C in vitro. However, in this case, p21 expression was confined to the cut edge of the tissue. In contrast, p21 in human adrenal glands, as in ischemic rat glands, was within the inner regions of the cortex, supporting an origin of the protein in vivo rather than postmortem. The p53/p21 pathway of reaction to cellular injury, potentially leading to apoptosis, may play a role in tissue damage such as that resulting from ischemia/reperfusion. In the human adrenal cortex this process may be a precursor of adrenal failure.
Molecular Brain Research | 1999
Nathalie G. Bérubé; Xin Hang Swanson; Michael J. Bertram; Joseph D. Kittle; Vladimir V. Didenko; David S. Baskin; James R. Smith; Olivia M. Pereira-Smith
We have isolated and characterized a novel cDNA, C1q-Related Factor (CRF), that is predicted to encode a 258 amino acid polypeptide with a hydrophobic signal sequence, a collagenous region, and a globular domain at the carboxy terminus that shares homology to the C1q signature domain. Human CRF transcript is expressed at highest levels in the brain, particularly in the brainstem. In situ hybridization to mouse brain sections demonstrated that CRF transcripts are most abundant in areas of the nervous system involved in motor function, such as the Purkinje cells of the cerebellum, the accessory olivary nucleus, the pons and the red nucleus. The mouse CRF homolog is highly similar to the human gene at both the nucleotide and protein level, suggesting an important conserved role for this protein.
BioTechniques | 2006
Vladimir V. Didenko; David S. Baskin
We describe the first enzyme-driven technique for fluorescent labeling of single-walled carbon nanotubes (SWNTs). The labeling was performed via enzymatic biotinylation of nanotubes in the tyramide-horseradish peroxidase (HRP) reaction. Both direct and indirect fuorescent labeling of SWNTs was achieved using either biotinyl tyramide or fluorescently tagged tyramides. Biotinylated SWNTs later reacted with streptavidin-conjugated fluorophores. Linking semiconductor nanocrystals, quantum dots (Q-dots), to the surface of nanotubes resulted in their fluorescent visualization, whereas conventional fluorophores bound to SWNTs directly or through biotin-streptavidin linkage, were completely quenched. Enzymatic biotinylation permits fluorescent visualization of carbon nanotubes, which could be useful for a number of biomedical applications. In addition, other organic molecules such as proteins, antibodies, or DNA can be conjugated to biotinylated SWNTs using this approach.
Molecules | 2011
Candace L. Minchew; Vladimir V. Didenko
In apoptosis, the initial self-driven suicide phase generates cellular corpses which are digested in the phagolysosomes of professional and amateur phagocytes during the subsequent waste-management phase. This ensures the complete elimination of the genetic material which often contains pathological, viral or cancerous DNA sequences. Although the phagocytic phase is critical for the efficient execution of apoptosis, there are currently few methods specifically adapted for its detailed visualization in the fixed tissue section format. To resolve this we developed new fluorescent probes for in situ research. The probes selectively visualize active phagocytic cells of any lineage (professional, amateur phagocytes or surrounding tissue cells) which engulf and digest apoptotic cell DNA. These fluorescent probes are the covalently-bound enzyme-DNA intermediates produced in a topoisomerase reaction with specific “starting” oligonucleotides. They detect a specific marker of DNase II cleavage activity, which occurs exclusively in phagolysosomes of the cells that engulfed apoptotic nuclei. The probes provide snap-shot images of the digestion process occurring in cellular organelles responsible for the actual execution of phagocytic degradation of apoptotic cell corpses. We applied the probes for visualization of the phagocytic reaction in tissue sections of normal thymus and in several human lymphomas. We also discuss the nature, stability and properties of DNase II-type breaks as a marker of phagocytic activity. This development provides a useful fluorescent tool for studies of pathologies where clearance of dying cells is essential, such as cancers, inflammation, infection and auto-immune disorders.
Methods of Molecular Biology | 2011
Peter J. Hornsby; Vladimir V. Didenko
The in situ ligation (ISL) methodology detects apoptotic cells by the presence of characteristic DNA double-strand breaks. A labeled double-stranded probe is ligated to the double-strand breaks in situ on tissue sections. Like the popular TUNEL assay, ISL detects cells in apoptosis based on the ongoing destruction of DNA by apoptotic nucleases. In comparison to TUNEL, it is more specific for apoptosis versus other causes of DNA damage, both repairable damage and necrosis. In the decade and a half since its introduction, ISL has been used in several hundred publications. Here we review the development of the method, its current status, and its uses and limitations.
The Journal of Pathology | 1999
Vladimir V. Didenko; Xiangdong Wang; Lianqing Yang; Peter J. Hornsby
In vivo models are needed to study the reactions of tissues to DNA damage, such as the induction of the cyclin‐dependent kinase inhibitor p21, indicating potential repair of the damage, versus apoptosis, indicating the elimination of the damaged cells. Damage to DNA occurs in tissues during shock, sepsis, and other critical medical conditions. Previous studies have found evidence of damage to the cortex of adrenal glands from organ donors who had undergone severe trauma prior to death. The present experiment studied rats under experimental interventions of clinical relevance to patients with conditions that put them at risk for damage to the adrenal glands. These interventions comprised ischaemia and reperfusion injury, sepsis following caecal ligation and puncture, acute pancreatitis, and administration of chemical agents (zymosan and acrylonitrile). All the interventions caused an increase in p21 mRNA as assessed by northern blotting and in situ hybridization. Increased nuclear p21 protein was shown by immunohistochemistry. All the interventions caused damage to DNA, as shown by labelling of available 3′ termini of single‐strand breaks with terminal transferase. The number of cells undergoing apoptosis, visualized by ligation of a hairpin oligonucleotide probe to double‐strand breaks in DNA, was much lower. In rat adrenal glands, apoptotic cells were infrequent under all the conditions studied. They were more abundant in human organ donor adrenal glands that were previously shown to have extensive DNA damage accompanied by induction of p21. The similarity of the effects of a wide variety of surgical interventions and chemical agents suggest a common pathophysiological mechanism which is not specific to the initiating injury. Experimental injury of the rat adrenal cortex provides a model for investigating the role of organ DNA damage and of mediators of the response to DNA damage, such as p21. Copyright
PLOS ONE | 2014
Candace L. Minchew; Vladimir V. Didenko
We describe a new type of bio-nanomachine which runs on thermal noise. The machine is solely powered by the random motion of water molecules in its environment and does not ever require re-fuelling. The construct, which is made of DNA and vaccinia virus topoisomerase protein, can detect DNA damage by employing fluorescence. It uses Brownian motion as a cyclic motor to continually separate and bring together two types of fluorescent hairpins participating in FRET. This bio-molecular oscillator is a fast and specific sensor of 5′OH double-strand DNA breaks present in phagocytic phase of apoptosis. The detection takes 30 s in solution and 3 min in cell suspensions. The phagocytic phase is critical for the effective execution of apoptosis as it ensures complete degradation of the dying cells’ DNA, preventing release of pathological, viral and tumor DNA and self-immunization. The construct can be used as a smart FRET probe in studies of cell death and phagocytosis.
Journal of Visualized Experiments | 2014
Candace L. Minchew; Vladimir V. Didenko
We describe a new histochemical approach for visualization of phagocytic clearance in focal brain ischemia. The approach permits the study of elimination of dead cells in stroke by waste-management phagocytes of any cellular lineage. Although numerous cells of different origins that are capable of phagocytosis are present in ischemic brain, only part of them actively engulf and digest cell corpses. The selective visualization, quantification and analysis of such active phagocytic waste-management are helpful in assessing brain response to ischemia. Efficient cell death clearance is important for brain recovery from ischemic injury, as it opens the way for the subsequent regenerative processes. The failure to clean the corpses would result in a toxic reaction caused by non-degraded DNA and proteins. The described procedure uses fluorescent probes selectively ligated by a viral topoisomerase to characteristic DNA breaks produced in all phagocytes during engulfment and digestion of cells irreversibly damaged by ischemia. The method is a new tool for the investigation of brain reaction to ischemic injury.