Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Vapnik is active.

Publication


Featured researches published by Vladimir Vapnik.


Machine Learning | 1995

Support-Vector Networks

Corinna Cortes; Vladimir Vapnik

The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.


conference on learning theory | 1992

A training algorithm for optimal margin classifiers

Bernhard E. Boser; Isabelle Guyon; Vladimir Vapnik

A training algorithm that maximizes the margin between the training patterns and the decision boundary is presented. The technique is applicable to a wide variety of the classification functions, including Perceptrons, polynomials, and Radial Basis Functions. The effective number of parameters is adjusted automatically to match the complexity of the problem. The solution is expressed as a linear combination of supporting patterns. These are the subset of training patterns that are closest to the decision boundary. Bounds on the generalization performance based on the leave-one-out method and the VC-dimension are given. Experimental results on optical character recognition problems demonstrate the good generalization obtained when compared with other learning algorithms.


Machine Learning | 2002

Gene Selection for Cancer Classification using Support Vector Machines

Isabelle Guyon; Jason Weston; Stephen Barnhill; Vladimir Vapnik

DNA micro-arrays now permit scientists to screen thousands of genes simultaneously and determine whether those genes are active, hyperactive or silent in normal or cancerous tissue. Because these new micro-array devices generate bewildering amounts of raw data, new analytical methods must be developed to sort out whether cancer tissues have distinctive signatures of gene expression over normal tissues or other types of cancer tissues.In this paper, we address the problem of selection of a small subset of genes from broad patterns of gene expression data, recorded on DNA micro-arrays. Using available training examples from cancer and normal patients, we build a classifier suitable for genetic diagnosis, as well as drug discovery. Previous attempts to address this problem select genes with correlation techniques. We propose a new method of gene selection utilizing Support Vector Machine methods based on Recursive Feature Elimination (RFE). We demonstrate experimentally that the genes selected by our techniques yield better classification performance and are biologically relevant to cancer.In contrast with the baseline method, our method eliminates gene redundancy automatically and yields better and more compact gene subsets. In patients with leukemia our method discovered 2 genes that yield zero leave-one-out error, while 64 genes are necessary for the baseline method to get the best result (one leave-one-out error). In the colon cancer database, using only 4 genes our method is 98% accurate, while the baseline method is only 86% accurate.


IEEE Transactions on Neural Networks | 1999

An overview of statistical learning theory

Vladimir Vapnik

Statistical learning theory was introduced in the late 1960s. Until the 1990s it was a purely theoretical analysis of the problem of function estimation from a given collection of data. In the middle of the 1990s new types of learning algorithms (called support vector machines) based on the developed theory were proposed. This made statistical learning theory not only a tool for the theoretical analysis but also a tool for creating practical algorithms for estimating multidimensional functions. This article presents a very general overview of statistical learning theory including both theoretical and algorithmic aspects of the theory. The goal of this overview is to demonstrate how the abstract learning theory established conditions for generalization which are more general than those discussed in classical statistical paradigms and how the understanding of these conditions inspired new algorithmic approaches to function estimation problems. A more detailed overview of the theory (without proofs) can be found in Vapnik (1995). In Vapnik (1998) one can find detailed description of the theory (including proofs).


Theory of Probability and Its Applications | 1971

On the Uniform Convergence of Relative Frequencies of Events to Their Probabilities

Vladimir Vapnik; A. Ya. Chervonenkis

This chapter reproduces the English translation by B. Seckler of the paper by Vapnik and Chervonenkis in which they gave proofs for the innovative results they had obtained in a draft form in July 1966 and announced in 1968 in their note in Soviet Mathematics Doklady. The paper was first published in Russian as Вапник В. Н. and Червоненкис А. Я. О равномерноЙ сходимости частот появления событиЙ к их вероятностям. Теория вероятностеЙ и ее применения 16(2), 264–279 (1971).


Machine Learning | 2002

Choosing Multiple Parameters for Support Vector Machines

Olivier Chapelle; Vladimir Vapnik; Olivier Bousquet; Sayan Mukherjee

The problem of automatically tuning multiple parameters for pattern recognition Support Vector Machines (SVMs) is considered. This is done by minimizing some estimates of the generalization error of SVMs using a gradient descent algorithm over the set of parameters. Usual methods for choosing parameters, based on exhaustive search become intractable as soon as the number of parameters exceeds two. Some experimental results assess the feasibility of our approach for a large number of parameters (more than 100) and demonstrate an improvement of generalization performance.


IEEE Transactions on Neural Networks | 1999

Support vector machines for spam categorization

Harris Drucker; Donghui Wu; Vladimir Vapnik

We study the use of support vector machines (SVMs) in classifying e-mail as spam or nonspam by comparing it to three other classification algorithms: Ripper, Rocchio, and boosting decision trees. These four algorithms were tested on two different data sets: one data set where the number of features were constrained to the 1000 best features and another data set where the dimensionality was over 7000. SVMs performed best when using binary features. For both data sets, boosting trees and SVMs had acceptable test performance in terms of accuracy and speed. However, SVMs had significantly less training time.


IEEE Transactions on Neural Networks | 1999

Support vector machines for histogram-based image classification

Olivier Chapelle; Patrick Haffner; Vladimir Vapnik

Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVMs) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y) = e(-rho)Sigma(i)/xia-yia/b with a < or = 1 and b < or = 2 are evaluated on the classification of images extracted from the Corel stock photo collection and shown to far outperform traditional polynomial or Gaussian radial basis function (RBF) kernels. Moreover, we observed that a simple remapping of the input x(i)-->x(i)(a) improves the performance of linear SVMs to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.


IEEE Transactions on Signal Processing | 1997

Comparing support vector machines with Gaussian kernels to radial basis function classifiers

Bernhard Schölkopf; Kah Kay Sung; Christopher J. C. Burges; Federico Girosi; Partha Niyogi; Tomaso Poggio; Vladimir Vapnik

The support vector (SV) machine is a novel type of learning machine, based on statistical learning theory, which contains polynomial classifiers, neural networks, and radial basis function (RBF) networks as special cases. In the RBF case, the SV algorithm automatically determines centers, weights, and threshold that minimize an upper bound on the expected test error. The present study is devoted to an experimental comparison of these machines with a classical approach, where the centers are determined by X-means clustering, and the weights are computed using error backpropagation. We consider three machines, namely, a classical RBF machine, an SV machine with Gaussian kernel, and a hybrid system with the centers determined by the SV method and the weights trained by error backpropagation. Our results show that on the United States postal service database of handwritten digits, the SV machine achieves the highest recognition accuracy, followed by the hybrid system. The SV approach is thus not only theoretically well-founded but also superior in a practical application.


international conference on artificial neural networks | 1997

Predicting Time Series with Support Vector Machines

Klaus-Robert Müller; Alexander J. Smola; Gunnar Rätsch; Bernhard Schölkopf; Jens Kohlmorgen; Vladimir Vapnik

Support Vector Machines are used for time series prediction and compared to radial basis function networks. We make use of two different cost functions for Support Vectors: training with (i) an e insensitive loss and (ii) Hubers robust loss function and discuss how to choose the regularization parameters in these models. Two applications are considered: data from (a) a noisy (normal and uniform noise) Mackey Glass equation and (b) the Santa Fe competition (set D). In both cases Support Vector Machines show an excellent performance. In case (b) the Support Vector approach improves the best known result on the benchmark by a factor of 29%.

Collaboration


Dive into the Vladimir Vapnik's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge