Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Volenec is active.

Publication


Featured researches published by Vladimir Volenec.


American Mathematical Monthly | 1989

Recent advances in geometric inequalities

D. S. Mitrinović; Josip Pečarić; Vladimir Volenec

The Existence of a Triangle.- Duality between Geometric Inequalities and Inequalities for Positive Numbers.- Homogeneous Symmetric Polynomial Geometric Inequalities.- Duality between Different Triangle Inequalities and Triangle Inequalities with (R, r, s).- Transformations for the Angles of a Triangle.- Some Trigonometric Inequalities.- Some Other Transformations.- Convex Functions and Geometric Inequalities.- Miscellaneous Inequalities with Elements of a Triangle.- Special Triangles.- Triangle and Point.- Inequalities with Several Triangles.- The Mobius-Neuberg and the Mobius-Pompeiu Theorems.- Inequalities for Quadrilaterals.- Inequalities for Polygons.- Inequalities for a Circle.- Particular Inequalities in Plane Geometry.- Inequalities for Simplexes in En (n ? 2).- Inequalities for Tetrahedra.- Other Inequalities in En (n ? 2).


SIAM Journal on Matrix Analysis and Applications | 1997

Bounds for the Differences of Matrix Means

Mladen Alić; Bertram Mond; Josip Pečarić; Vladimir Volenec

The classical inequality between the weighted arithmetic and geometric means has recently been extended to means of positive definite matrices. Here we give bounds for the difference between such matrix means. Differences between other matrix means, such as the geometric and harmonic means, are also given. Finally, conditions for the reversal of the matrix inequalities obtained are also pointed out.


Linear Algebra and its Applications | 1997

THE ARITHMETIC-GEOMETRIC-HARMONIC-MEAN AND RELATED MATRIX INEQUALITIES

M. Alić; B. Mond; Josip Pečarić; Vladimir Volenec

Abstract Recently, Sagae and Tanabe defined a geometric mean of positive definite matrices and proved the harmonic-geometric-arithmetic-mean inequality. Here, we give a reversal of these results.


Archive | 1989

Some Trigonometric Inequalities

D. S. Mitrinović; Josip Pečarić; Vladimir Volenec

In the book [1] one finds that almost all triangles inequalities are symmetric in form when expressed in terms of the sides a, b, c or the angles A, B, C of a given triangle. No doubt that also assymmetric triangle inequalities play a very important role in geometric inequalities. It should be noted that many of these inequalities are still valid for real numbers A, B, C which satisfy the condition


Journal of Applied Mathematics | 2014

Affine Fullerene C60 in a GS-Quasigroup

Vladimir Volenec; Zdenka Kolar-Begović; Ružica Kolar-Šuper


Elemente Der Mathematik | 2008

Thébault's theorem

Darko Veljan; Vladimir Volenec

A + B + C = p\pi ,


Sarajevo Journal of Mathematics | 2015

Equicevian points and equiangular lines of a triangle in an isotropic plane

Zdenka Kolar-Begović; Ružica Kolar-Šuper; Vladimir Volenec


Geometriae Dedicata | 1998

Inequalities for Volumes of Simplices in Terms of Their Faces

Vladimir Volenec; Darko Veljan; Josip Pečarić

where p is a natural number (which has to be odd in some cases). This also applies to the inequality of M. S. Klamkin [2] which can be specialized in many ways to obtain numerous well known inequalities.


Archive | 1989

The Existence of a Triangle

D. S. Mitrinović; Josip Pečarić; Vladimir Volenec

It will be shown that the affine fullerene C60, which is defined as an affine image of buckminsterfullerene C60, can be obtained only by means of the golden section. The concept of the affine fullerene C60 will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup .


Archive | 1989

The Möbius-Neuberg and the Möbius-Pompeiu Theorems

D. S. Mitrinović; Josip Pečarić; Vladimir Volenec

Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Printund Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber.

Collaboration


Dive into the Vladimir Volenec's collaboration.

Top Co-Authors

Avatar

Ružica Kolar-Šuper

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar

Zdenka Kolar-Begović

Josip Juraj Strossmayer University of Osijek

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge