Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladimir Volloch is active.

Publication


Featured researches published by Vladimir Volloch.


The FASEB Journal | 2001

Cell differentiation by mechanical stress

Gregory H. Altman; Rebecca L. Horan; Ivan Martin; Jian Farhadi; Peter R. H. Stark; Vladimir Volloch; John C. Richmond; Gordana Vunjak-Novakovic; David L. Kaplan

Growth factors, hormones, and other regulatory molecules are traditionally required in tissue engineering studies to direct the differentiation of progenitor cells along specific lineages. We demonstrate that mechanical stimulation in vitro, without ligament‐selective exogenous growth and differentiation factors, induces the differentiation of mesenchymal progenitor cells from the bone marrow into a ligament cell lineage in preference to alternative paths (i.e., bone or cartilage cell lineages). A bioreactor was designed to permit the controlled application of ligament‐like multidimensional mechanical strains (translational and rotational strain) to the undifferentiated cells embedded in a collagen gel. The application of mechanical stress over a period of 21 days up‐regulated ligament fibroblast markers, including collagen types I and III and tenascin‐C, fostered statistically significant cell alignment and density and resulted in the formation of oriented collagen fibers, all features characteristic of ligament cells. At the same time, no up‐regulation of bone or cartilage‐specific cell markers was observed.


FEBS Letters | 1998

Role of Hsp70 in regulation of stress-kinase JNK: implications in apoptosis and aging

Vladimir L. Gabai; Anatoli B. Meriin; Julia A. Yaglom; Vladimir Volloch; Michael Y. Sherman

Cell protection from stresses by the major heat shock protein Hsp72 was previously attributed to its ability to prevent aggregation and to accelerate refolding of damaged proteins. This repair function of Hsp72 may play an important role in cell survival after extremely harsh protein damaging treatments leading to necrotic cell death. On the other hand, protein repair function of Hsp72 cannot explain how it protects cells from stresses which do not cause direct protein damage, e.g. some genotoxic agents. These stresses kill cells through activation of apoptosis, and Hsp72 increases cell survival by interfering with the apoptotic program. Recently it has been found that Hsp72 mediates suppression of a stress‐activated protein kinase, JNK, an early component of stress‐induced apoptotic signalling pathway. This finding provides the basis for the anti‐apoptotic activity of Hsp72. These observations can explain increased stress sensitivity of aged cells in which compromised inducibility of Hsp72 leads to a loss of control of JNK activation by stresses and subsequently to a higher rate of apoptotic death.


Calcified Tissue International | 2004

Mechanical Stimulation Promotes Osteogenic Differentiation of Human Bone Marrow Stromal Cells on 3-D Partially Demineralized Bone Scaffolds In Vitro

Joshua R. Mauney; S. Sjostorm; Jeffrey B. Blumberg; Rebecca L. Horan; J. P. O’Leary; Gordana Vunjak-Novakovic; Vladimir Volloch; David L. Kaplan

Bone is a dynamic tissue that is able to sense and adapt to mechanical stimuli by modulating its mass, geometry, and structure. Bone marrow stromal cells (BMSCs) are known to play an integral part in bone formation by providing an osteoprogenitor cell source capable of differentiating into mature osteoblasts in response to mechanical stresses. Characteristics of the in vivo bone environment including the three dimensional (3-D) lacunocanalicular structure and extracellular matrix composition have previously been shown to play major roles in influencing mechanotransduction processes within bone cells. To more accurately model this phenomenon in vitro, we cultured human BMSCs on 3-D, partially demineralized bone scaffolds in the presence of four-point bending loads within a novel bioreactor. The effect of mechanical loading and dexamethasone concentration on BMSC osteogenic differentiation and mineralized matrix production was studied for 8 and 16 days of culture. Mechanical stimulation after 16 days with 10 nM dexamethasone promoted osteogenic differentiation of BMSCs by significantly elevating alkaline phosphatase activity as well as alkaline phosphatase and osteopontin transcript levels over static controls. Mineralized matrix production also increased under these culture conditions. Dexamethasone concentration had a dramatic effect on the ability of mechanical stimulation to modulate these phenotypic and genotypic responses. These results provide increased insight into the role of mechanical stimulation on osteogenic differentiation of human BMSCs in vitro and may lead to improved strategies in bone tissue engineering.


Molecular and Cellular Biology | 2000

Hsp72-Mediated Suppression of c-Jun N-Terminal Kinase Is Implicated in Development of Tolerance to Caspase-Independent Cell Death

Vladimir L. Gabai; Julia A. Yaglom; Vladimir Volloch; Anatoli B. Meriin; Thomas Force; Maria Koutroumanis; Bernard Massie; Dick D. Mosser; Michael Y. Sherman

ABSTRACT Pretreatment with mild heat shock is known to protect cells from severe stress (acquired thermotolerance). Here we addressed the mechanism of this phenomenon by using primary human fibroblasts. Severe heat shock (45°C, 75 min) of the fibroblasts caused cell death displaying morphological characteristics of apoptosis; however, it was caspase independent. This cell death process was accompanied by strong activation of Akt, extracellular signal-regulated kinase 1 (ERK1) and ERK2, p38, and c-Jun N-terminal (JNK) kinases. Suppression of Akt or ERK1 and -2 kinases increased cell thermosensitivity. In contrast, suppression of stress kinase JNK rendered cells thermoresistant. Development of thermotolerance was not associated with Akt or ERK1 and -2 regulation, and inhibition of these kinases did not reduce acquired thermotolerance. On the other hand, acquired tolerance to severe heat shock was associated with downregulation of JNK. Using an antisense-RNA approach, we found that accumulation of the heat shock protein Hsp72 is necessary for JNK downregulation and is critical for thermotolerance. The capability of naive cells to withstand moderate heat treatment also appears to be dependent on the accumulation of Hsp72 induced by this stress. Indeed, exposure to 45°C for 45 min caused only transient JNK activation and was nonlethal, while prevention of Hsp72 accumulation prolonged JNK activation and led to massive cell death. We also found that JNK activation by UV irradiation, interleukin-1, or tumor necrosis factor was suppressed in thermotolerant cells and that Hsp72 accumulation was responsible for this effect. Hsp72-mediated suppression of JNK is therefore critical for acquired thermotolerance and may play a role in tolerance to other stresses.


Tissue Engineering | 2004

Osteogenic Differentiation of Human Bone Marrow Stromal Cells on Partially Demineralized Bone Scaffolds in Vitro

Joshua R. Mauney; Jeff Blumberg; Mono Pirun; Vladimir Volloch; Gordana Vunjak-Novakovic; David L. Kaplan

Tissue engineering has been used to enhance the utility of biomaterials for clinical bone repair by the incorporation of an osteogenic cell source into a scaffold followed by the in vitro promotion of osteogenic differentiation before host implantation. In this study, three-dimensional, partially demineralized bone scaffolds were investigated for their ability to support osteogenic differentiation of human bone marrow stromal cells (BMSCs) in vitro. Dynamic cell seeding resulted in homogeneous cell attachment and infiltration within the matrix and produced significantly higher seeding efficiencies when compared with a conventional static seeding method. Dynamically seeded scaffolds were cultured for 7 and 14 days in the presence of dexamethasone and evaluated on biochemical, molecular, and morphological levels for osteogenic differentiation. Significant elevation in alkaline phosphatase activity was observed versus controls over the 14-day culture, with a transient peak indicative of early mineralization on day 7. On the basis of RT-PCR, dexamethasone-treated samples showed elevations in alkaline phosphatase and osteocalcin expression levels at 7 and 14 days over nontreated controls, while bone sialoprotein was produced only in the presence of dexamethasone at 14 days. Scanning electron microscopy evaluation of dexamethasone-treated samples at 14 days revealed primarily cuboidal cells indicative of mature osteoblasts, in contrast to nontreated controls displaying a majority of cells with a fibroblastic cell morphology. These results demonstrate that partially demineralized bone can be successfully used with human BMSCs to support osteogenic differentiation in vitro. This osseous biomaterial may offer new potential benefits as a tool for clinical bone replacement.


Oncogene | 1999

Oncogenic potential of Hsp72.

Vladimir Volloch; Michael Y. Sherman

Hsp72 is the major heat shock-inducible protein capable of protecting cells from a variety of stresses. In non-transformed cells at normal conditions Hsp72 is expressed at very low levels. It is, however, present at elevated levels in the major fraction of tumors and in many transformed cell lines. It is commonly assumed that in tumor cells the expression of Hsp72 at elevated levels is the consequence of oncogenic transformation. In the present study we addressed an alternative possibility that Hsp72 plays an active role in the process of oncogenic transformation. We report here that when Hsp72 was expressed in the Rat-1 fibroblasts either constitutively or from an adenovirus-based construct, cells become oncogenically transformed by the following criteria: loss of contact inhibition and formation of foci characteristic for oncogenically transformed cells; acquisition of the ability to grow in an anchorage-independent manner and to form colonies in soft agar; generation of tumors upon injection into mice. Furthermore, we also report that turning off the Hsp72 expression led to the reversal of the transformed phenotype. We also show that oncogenic potential of Hsp72 is confined in its peptide binding domain since the expression of this domain alone was sufficient for oncogenic transformation of Rat-1 cells.


Cell Stress & Chaperones | 2000

HSP72 can protect cells from heat-induced apoptosis by accelerating the inactivation of stress kinase JNK

Vladimir Volloch; Vladimir L. Gabai; Sophia Rits; Thomas Force; Michael Y. Sherman

Abstract The major heat shock protein Hsp72 prevents heat-induced apoptosis. We have previously demonstrated that transiently expressed Hsp72 exerts its anti-apoptotic effect by suppressing the activity of stress-kinase JNK, an early component of the apoptotic pathway initiated by heat shock. On the other hand, constitutive expression of Hsp72 does not lead to suppression of heat-induced JNK activation, yet still efficiently prevents apoptosis. To address this apparent contradiction, we studied the effects of constitutively expressed Hsp72 on activation of JNK and apoptosis in Rat-1 fibroblasts. We found that the level of heat-induced apoptosis directly correlated with the duration rather than the magnitude of JNK activity following heat shock. Constitutively expressed Hsp72 strongly reduced the duration of JNK while it did not suppress initial JNK activation. These effects were due to Hsp72-mediated acceleration of JNK dephosphorylation. Addition of vanadate to inhibit JNK phosphatase activity completely prevented the anti-apoptotic action of Hsp72. Therefore, suppression of heat-induced apoptosis by Hsp72 could be fully accounted for by its effects on JNK activity.


Cell Stress & Chaperones | 1998

Reduced thermotolerance in aged cells results from a loss of an hsp72-mediated control of JNK signaling pathway.

Vladimir Volloch; Dick D. Mosser; Bernard Massie; Michael Y. Sherman

Aged organisms exhibit a greatly decreased ability to induce the major heat shock protein, Hsp72, in response to stresses, a phenomenon that can also be observed in cell cultures (Heydari AR, Takahashi R, Gutsmann A, You S and Richardson A (1994) Hsp70 and aging. Experientia 50: 1092-1098). Hsp72 was shown to protect cells from a variety of stresses. The protective function of Hsp72 has been commonly ascribed to its chaperoning ability. However, recently we showed that Hsp72 protects cells from heat shock by suppression of a stress-kinase JNK, an essential component of the heat-induced apoptotic pathway (Gabai VL, Meriin AB, Mosser DD, Caron AW, Rits S, Shifrin VI and Sherman MY (1997) Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J Biol Chem 272: 18033-18037). Here we demonstrate that because of the diminished inducibility of Hsp72 in aged cells, Hsp72-mediated control of JNK signaling pathway is compromised. This results in increased rate of apoptotic cell death following heat shock. We show that forced expression of Hsp72 in aged cells from an adenovirus-based vector completely suppresses activation of JNK by heat shock and consequently protects from heat-induced apoptosis. We also demonstrate for the first time that it is possible to restore endogenous expression of Hsp72 in aged cells. This can be achieved by treatment with the proteasome inhibitor MG132. Induction of Hsp72 in aged cells under these conditions leads to suppression of JNK activation by a heat shock and restoration of thermotolerance manifested in a lower rate of apoptosis.


FEBS Letters | 1999

ATPase activity of the heat shock protein Hsp72 is dispensable for its effects on dephosphorylation of stress kinase JNK and on heat-induced apoptosis

Vladimir Volloch; Vladimir L. Gabai; Sophia Rits; Michael Y. Sherman

A major inducible heat shock protein, Hsp72, has previously been found to stimulate dephosphorylation (inactivation) of stress kinase JNK in heat‐shocked cells and protect them from apoptosis. Using Rat‐1 fibroblasts with constitutive expression of a human Hsp72 or its deletion mutant lacking an ATPase domain (C‐terminal fragment (CTF)), we tested whether ATPase activity of Hsp72 is necessary for these effects. We found that expression of CTF markedly increased, similarly to the intact protein, JNK dephosphorylation in heat‐shocked cells. As a result, JNK inactivation following heat shock occurred much faster in cells expressing either full‐length or mutant Hsp72 than in parental cells and this was accompanied by suppression of heat‐induced apoptosis. Thus, protein refolding activity of Hsp72 appears to be dispensable for its effect on JNK inactivation and apoptosis.


Matrix Biology | 2009

Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response.

Josh Mauney; Vladimir Volloch

Previously, we reported that the conformational transition of collagen I matrix plays, along with differentiation stimuli, a regulatory role in determination of differentiation lineage of bone marrow stromal sells via distinct signaling pathways specific for the structural state of the matrix. The present study addresses mechanisms underlying differential structural conformation-specific effects of collagen matrices on differentiation into diverse lineages. The results obtained suggest that the pivotal player in the observed matrix conformation-mediated regulation is a differential cellular stress response elicited by the exposure to native but not to denatured collagen I matrix. The stress causing such a response appears to be generated by matrix contraction and mediated by Alpha2Beta1 integrins engaged on native but not on denatured collagen I matrix. The principal facet of the observed phenomenon is not the nature of a stress but general stress response: when cells on denatured collagen I matrix are subjected to thermal stress, osteogenic pathway shifts to that seen on native collagen I matrix. Importantly, cellular stress response might be commonly involved in determination of differentiation lineage. Indeed, distinct components of cellular stress response machinery appear to regulate differentiation into diverse lineages. Thus, augmentation of Hsp90 levels enables the operation of efficient Alpha1Beta1/Alpha2Beta1 integrin-driven ERK activation pathways hence facilitating osteogenesis and suppressing adipogenesis, whereas myogenesis of satellite stem cells appears to be promoted by native collagen I matrix-elicited activation and nuclear translocation of another stress response component, Beta-catenin, shown to be essential for skeletal myogenesis, and chondrogenesis may involve stress-mediated elevation of yet another stress response constituent, Hsp70, shown to be an interactive partner of the chondrogenic transcription factor SOX9. The proposed concept of the integral role of cellular stress response in tissue generation and maintenance suggests new therapeutic approaches and indicates novel tissue engineering strategies.

Collaboration


Dive into the Vladimir Volloch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Rits

Boston Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce Schweitzer

Boston Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vladimir L. Gabai

Boston Biomedical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge