Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vladislav V. Verkhusha is active.

Publication


Featured researches published by Vladislav V. Verkhusha.


Nature | 2006

Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2.

Pedro V. Peña; Foteini Davrazou; Xiaobing Shi; Kay L. Walter; Vladislav V. Verkhusha; Or Gozani; Rui Zhao; Tatiana G. Kutateladze

Covalent modifications of histone tails have a key role in regulating chromatin structure and controlling transcriptional activity. In eukaryotes, histone H3 trimethylated at lysine 4 (H3K4me3) is associated with active chromatin and gene expression. We recently found that plant homeodomain (PHD) finger of tumour suppressor ING2 (inhibitor of growth 2) binds H3K4me3 and represents a new family of modules that target this epigenetic mark. The molecular mechanism of H3K4me3 recognition, however, remains unknown. Here we report a 2.0 Å resolution structure of the mouse ING2 PHD finger in complex with a histone H3 peptide trimethylated at lysine 4. The H3K4me3 tail is bound in an extended conformation in a deep and extensive binding site consisting of elements that are conserved among the ING family of proteins. The trimethylammonium group of Lys 4 is recognized by the aromatic side chains of Y215 and W238 residues, whereas the intermolecular hydrogen-bonding and complementary surface interactions, involving Ala 1, Arg 2, Thr 3 and Thr 6 of the peptide, account for the PHD fingers high specificity and affinity. Substitution of the binding site residues disrupts H3K4me3 interaction in vitro and impairs the ability of ING2 to induce apoptosis in vivo. Strong binding of other ING and YNG PHD fingers suggests that the recognition of H3K4me3 histone code is a general feature of the ING/YNG proteins. Elucidation of the mechanisms underlying this novel function of PHD fingers provides a basis for deciphering the role of the ING family of tumour suppressors in chromatin regulation and signalling.


Nature Biotechnology | 2006

Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light

Nadya G. Gurskaya; Vladislav V. Verkhusha; Alexander S. Shcheglov; Dmitry B. Staroverov; Tatyana V Chepurnykh; Arkady F. Fradkov; Sergey Lukyanov; Konstantin A. Lukyanov

Green fluorescent protein (GFP) and GFP-like proteins represent invaluable genetically encoded fluorescent probes. In the last few years a new class of photoactivatable fluorescent proteins (PAFPs) capable of pronounced light-induced spectral changes have been developed. Except for tetrameric KFP1 (ref. 4), all known PAFPs, including PA-GFP, Kaede, EosFP, PS-CFP, Dronpa, PA-mRFP1 and KikGR require light in the UV-violet spectral region for activation through one-photon excitation—such light can be phototoxic to some biological systems. Here, we report a monomeric PAFP, Dendra, derived from octocoral Dendronephthya sp. and capable of 1,000- to 4,500-fold photoconversion from green to red fluorescent states in response to either visible blue or UV-violet light. Dendra represents the first PAFP, which is simultaneously monomeric, efficiently matures at 37 °C, demonstrates high photostability of the activated state, and can be photoactivated by a common, marginally phototoxic, 488-nm laser line. We demonstrate the suitability of Dendra for protein labeling and tracking to quantitatively study dynamics of fibrillarin and vimentin in mammalian cells.


Nature Methods | 2009

Photoactivatable mCherry for high-resolution two-color fluorescence microscopy

Fedor V. Subach; George H. Patterson; Suliana Manley; Jennifer M. Gillette; Jennifer Lippincott-Schwartz; Vladislav V. Verkhusha

The reliance of modern microscopy techniques on photoactivatable fluorescent proteins prompted development of mCherry variants that are initially dark but become red fluorescent after violet-light irradiation. Using ensemble and single-molecule characteristics as selection criteria, we developed PAmCherry1 with excitation/emission maxima at 564/595 nm. Compared to other monomeric red photoactivatable proteins, it has faster maturation, better pH stability, faster photoactivation, higher photoactivation contrast and better photostability. Lack of green fluorescence and single-molecule behavior make monomeric PAmCherry1 a preferred tag for two-color diffraction-limited photoactivation imaging and for super-resolution techniques such as one- and two-color photoactivated localization microscopy (PALM). We performed PALM imaging using PAmCherry1-tagged transferrin receptor expressed alone or with photoactivatable GFP–tagged clathrin light chain. Pair correlation and cluster analyses of the resulting PALM images identified ≤200 nm clusters of transferrin receptor and clathrin light chain at ≤25 nm resolution and confirmed the utility of PAmCherry1 as an intracellular probe.


Nature Biotechnology | 2011

Bright and stable near-infrared fluorescent protein for in vivo imaging

Grigory S. Filonov; Kiryl D. Piatkevich; Li Min Ting; Jinghang Zhang; Kami Kim; Vladislav V. Verkhusha

Imaging biological processes in mammalian tissues will be facilitated by fluorescent probes with excitation and emission bands within the near-infrared optical window of high transparency. Here we report a phytochrome-based near-infrared fluorescent protein (iRFP) with excitation and emission maxima at 690 nm and 713 nm, respectively. iRFP does not require an exogenous supply of the chromophore biliverdin and has higher effective brightness, intracellular stability and photostability than earlier phytochrome-derived fluorescent probes. Compared with far-red GFP-like proteins, iRFP has a substantially higher signal-to-background ratio in a mouse model due to its infrared-shifted spectra.


Nature Reviews Molecular Cell Biology | 2005

Photoactivatable fluorescent proteins

Konstantin A. Lukyanov; Dmitry M. Chudakov; Sergey Lukyanov; Vladislav V. Verkhusha

The fluorescence characteristics of photoactivatable proteins can be controlled by irradiating them with light of a specific wavelength, intensity and duration. This provides unique possibilities for the optical labelling and tracking of living cells, organelles and intracellular molecules in a spatio-temporal manner. Here, we discuss the properties of the available photoactivatable fluorescent proteins and their potential applications.


Biochemical Journal | 2009

Far-red fluorescent tags for protein imaging in living tissues

Dmitry Shcherbo; Christopher S. Murphy; Galina V. Ermakova; Elena A. Solovieva; Tatiana V. Chepurnykh; Aleksandr S. Shcheglov; Vladislav V. Verkhusha; Vladimir Z. Pletnev; Kristin L. Hazelwood; Patrick M. Roche; Sergey Lukyanov; Andrey G. Zaraisky; Michael W. Davidson; Dmitriy M. Chudakov

A vast colour palette of monomeric fluorescent proteins has been developed to investigate protein localization, motility and interactions. However, low brightness has remained a problem in far-red variants, which hampers multicolour labelling and whole-body imaging techniques. In the present paper, we report mKate2, a monomeric far-red fluorescent protein that is almost 3-fold brighter than the previously reported mKate and is 10-fold brighter than mPlum. The high-brightness, far-red emission spectrum, excellent pH resistance and photostability, coupled with low toxicity demonstrated in transgenic Xenopus laevis embryos, make mKate2 a superior fluorescent tag for imaging in living tissues. We also report tdKatushka2, a tandem far-red tag that performs well in fusions, provides 4-fold brighter near-IR fluorescence compared with mRaspberry or mCherry, and is 20-fold brighter than mPlum. Together, monomeric mKate2 and pseudo-monomeric tdKatushka2 represent the next generation of extra-bright far-red fluorescent probes offering novel possibilities for fluorescent imaging of proteins in living cells and animals.


Nature Methods | 2008

Intravital imaging of metastatic behavior through a mammary imaging window

Dmitriy Kedrin; Bojana Gligorijevic; Jeffrey Wyckoff; Vladislav V. Verkhusha; John Condeelis; Jeffrey E. Segall; Jacco van Rheenen

We report a technique to evaluate the same tumor microenvironment over multiple intravital imaging sessions in living mice. We optically marked individual tumor cells expressing photoswitchable proteins in an orthotopic mammary carcinoma and followed them for extended periods through a mammary imaging window. We found that two distinct microenvironments in the same orthotopic mammary tumor affected differently the invasion and intravasation of tumor cells.


Nature Biotechnology | 2004

The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins

Vladislav V. Verkhusha; Konstantin A. Lukyanov

The green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its fluorescent homologs from Anthozoa corals have become invaluable tools for in vivo imaging of cells and tissues. Despite spectral and chromophore diversity, about 100 cloned members of the GFP-like protein family possess common structural, biochemical and photophysical features. Anthozoa GFP-like proteins are available in colors and properties unlike those of A. victoria GFP variants and thus provide powerful new fluorophores for molecular labeling and intracellular detection. Although Anthozoa GFP-like proteins provide some advantages over GFP, they also have certain drawbacks, such as obligate oligomerization and slow or incomplete fluorescence maturation. In the past few years, effective approaches for eliminating some of these limitations have been described. In addition, several Anthozoa GFP-like proteins have been developed into novel imaging agents, such as monomeric red and dimeric far-red fluorescent proteins, fluorescent timers and photoconvertible fluorescent labels. Future studies on the structure of this diverse set of proteins will further enhance their use in animal tissues and as intracellular biosensors.


Nature Methods | 2013

Near-infrared fluorescent proteins for multicolor in vivo imaging

Daria M. Shcherbakova; Vladislav V. Verkhusha

Near-infrared fluorescent proteins (FPs) are in high demand for in vivo imaging. We developed four spectrally distinct near-infrared FPs—iRFP670, iRFP682, iRFP702 and iRFP720—from bacterial phytochromes. iRFPs exhibit high brightness in mammalian cells and tissues and are suitable for long-term studies. iRFP670 and iRFP720 enable two-color imaging with standard approaches in living cells and mice. The four new iRFPs and the previously engineered iRFP713 allow multicolor imaging with spectral unmixing in living mice.


Chemistry & Biology | 2008

Conversion of red fluorescent protein into a bright blue probe.

Oksana M. Subach; Illia S. Gundorov; Masami Yoshimura; Fedor V. Subach; Jinghang Zhang; David Gruenwald; Ekaterina A. Souslova; Dmitriy M. Chudakov; Vladislav V. Verkhusha

We used a red chromophore formation pathway, in which the anionic red chromophore is formed from the neutral blue intermediate, to suggest a rational design strategy to develop blue fluorescent proteins with a tyrosine-based chromophore. The strategy was applied to red fluorescent proteins of the different genetic backgrounds, such as TagRFP, mCherry, HcRed1, M355NA, and mKeima, which all were converted into blue probes. Further improvement of the blue variant of TagRFP by random mutagenesis resulted in an enhanced monomeric protein, mTagBFP, characterized by the substantially higher brightness, the faster chromophore maturation, and the higher pH stability than blue fluorescent proteins with a histidine in the chromophore. The detailed biochemical and photochemical analysis indicates that mTagBFP is the true monomeric protein tag for multicolor and lifetime imaging, as well as the outstanding donor for green fluorescent proteins in Förster resonance energy transfer applications.

Collaboration


Dive into the Vladislav V. Verkhusha's collaboration.

Top Co-Authors

Avatar

Daria M. Shcherbakova

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fedor V. Subach

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kiryl D. Piatkevich

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Oksana M. Subach

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olga V. Stepanenko

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mikhail Baloban

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Konstantin A. Lukyanov

Nizhny Novgorod State Medical Academy

View shared research outputs
Top Co-Authors

Avatar

Andrii A. Kaberniuk

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge