Vladyslav V. Vyazovskiy
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vladyslav V. Vyazovskiy.
Nature Neuroscience | 2008
Vladyslav V. Vyazovskiy; Chiara Cirelli; Martha Pfister-Genskow; Ugo Faraguna; Giulio Tononi
Plastic changes occurring during wakefulness aid in the acquisition and consolidation of memories. For some memories, further consolidation requires sleep, but whether plastic processes during wakefulness and sleep differ is unclear. We show that, in rat cortex and hippocampus, GluR1-containing AMPA receptor (AMPAR) levels are high during wakefulness and low during sleep, and changes in the phosphorylation states of AMPARs, CamKII and GSK3β are consistent with synaptic potentiation during wakefulness and depression during sleep. Furthermore, slope and amplitude of cortical evoked responses increase after wakefulness, decrease after sleep and correlate with changes in slow-wave activity, a marker of sleep pressure. Changes in molecular and electrophysiological indicators of synaptic strength are largely independent of the time of day. Finally, cortical long-term potentiation can be easily induced after sleep, but not after wakefulness. Thus, wakefulness appears to be associated with net synaptic potentiation, whereas sleep may favor global synaptic depression, thereby preserving an overall balance of synaptic strength.
Neuron | 2011
Yuval Nir; Richard J. Staba; Thomas Andrillon; Vladyslav V. Vyazovskiy; Chiara Cirelli; Itzhak Fried; Giulio Tononi
The most prominent EEG events in sleep are slow waves, reflecting a slow (<1 Hz) oscillation between up and down states in cortical neurons. It is unknown whether slow oscillations are synchronous across the majority or the minority of brain regions--are they a global or local phenomenon? To examine this, we recorded simultaneously scalp EEG, intracerebral EEG, and unit firing in multiple brain regions of neurosurgical patients. We find that most sleep slow waves and the underlying active and inactive neuronal states occur locally. Thus, especially in late sleep, some regions can be active while others are silent. We also find that slow waves can propagate, usually from medial prefrontal cortex to the medial temporal lobe and hippocampus. Sleep spindles, the other hallmark of NREM sleep EEG, are likewise predominantly local. Thus, intracerebral communication during sleep is constrained because slow and spindle oscillations often occur out-of-phase in different brain regions.
Neuron | 2009
Vladyslav V. Vyazovskiy; Umberto Olcese; Yaniv M. Lazimy; Ugo Faraguna; Steve K. Esser; Justin C. Williams; Chiara Cirelli; Giulio Tononi
The need to sleep grows with the duration of wakefulness and dissipates with time spent asleep, a process called sleep homeostasis. What are the consequences of staying awake on brain cells, and why is sleep needed? Surprisingly, we do not know whether the firing of cortical neurons is affected by how long an animal has been awake or asleep. Here, we found that after sustained wakefulness cortical neurons fire at higher frequencies in all behavioral states. During early NREM sleep after sustained wakefulness, periods of population activity (ON) are short, frequent, and associated with synchronous firing, while periods of neuronal silence are long and frequent. After sustained sleep, firing rates and synchrony decrease, while the duration of ON periods increases. Changes in firing patterns in NREM sleep correlate with changes in slow-wave activity, a marker of sleep homeostasis. Thus, the systematic increase of firing during wakefulness is counterbalanced by staying asleep.
Nature | 2011
Vladyslav V. Vyazovskiy; Umberto Olcese; Erin C. Hanlon; Yuval Nir; Chiara Cirelli; Giulio Tononi
In an awake state, neurons in the cerebral cortex fire irregularly and electroencephalogram (EEG) recordings display low-amplitude, high-frequency fluctuations. During sleep, neurons oscillate between ‘on’ periods, when they fire as in an awake brain, and ‘off’ periods, when they stop firing altogether and the EEG displays high-amplitude slow waves. However, what happens to neuronal firing after a long period of being awake is not known. Here we show that in freely behaving rats after a long period in an awake state, cortical neurons can go briefly ‘offline’ as in sleep, accompanied by slow waves in the local EEG. Neurons often go offline in one cortical area but not in another, and during these periods of ‘local sleep’, the incidence of which increases with the duration of the awake state, rats are active and display an ‘awake’ EEG. However, they are progressively impaired in a sugar pellet reaching task. Thus, although both the EEG and behaviour indicate wakefulness, local populations of neurons in the cortex may be falling asleep, with negative consequences for performance.
The Journal of Neuroscience | 2009
Michael B Dash; Christopher L Douglas; Vladyslav V. Vyazovskiy; Chiara Cirelli; Giulio Tononi
Neuronal firing patterns, neuromodulators, and cerebral metabolism change across sleep–waking states, and the synaptic release of glutamate is critically involved in these processes. Extrasynaptic glutamate can also affect neural function and may be neurotoxic, but whether and how extracellular glutamate is regulated across sleep–waking states is unclear. To assess the effect of behavioral state on extracellular glutamate at high temporal resolution, we recorded glutamate concentration in prefrontal and motor cortex using fixed-potential amperometry in freely behaving rats. Simultaneously, we recorded local field potentials (LFPs) and electroencephalograms (EEGs) from contralateral cortex. We observed dynamic, progressive changes in the concentration of glutamate that switched direction as a function of behavioral state. Specifically, the concentration of glutamate increased progressively during waking (0.329 ± 0.06%/min) and rapid eye movement (REM) sleep (0.349 ± 0.13%/min). This increase was opposed by a progressive decrease during non-REM (NREM) sleep (0.338 ± 0.06%/min). During a 3 h sleep deprivation period, glutamate concentrations initially exhibited the progressive rise observed during spontaneous waking. As sleep pressure increased, glutamate concentrations ceased to increase and began decreasing despite continuous waking. During NREM sleep, the rate of decrease in glutamate was positively correlated with sleep intensity, as indexed by LFP slow-wave activity. The rate of decrease doubled during recovery sleep after sleep deprivation. Thus, the progressive increase in cortical extrasynaptic glutamate during EEG-activated states is counteracted by a decrease during NREM sleep that is modulated by sleep pressure. These results provide evidence for a long-term homeostasis of extracellular glutamate across sleep–waking states.
Journal of Sleep Research | 2000
Vladyslav V. Vyazovskiy; Alexander A. Borbély; Irene Tobler
To test the theory that sleep is a regional, use‐dependent process, rats were subjected to unilateral sensory stimulation during waking. This was achieved by cutting the whiskers on one side, in order to reduce the sensory input to the contralateral cortex. The animals were kept awake for 6 h in an enriched environment to activate the cortex contralateral to the intact side. Whiskers are known to be represented in the barrel field of the contralateral somatosensory cortex and their stimulation during exploratory behavior results in a specific activation of the projection area. In the 6 h recovery period following sleep deprivation, spectral power of the nonrapid eye‐movement (NREM) sleep EEG in the 0.75–6.0 Hz range exhibited an interhemispheric shift towards the cortex that was contralateral to the intact whiskers. The results support the theory that sleep has a regional, use‐dependent facet.
The Journal of Neuroscience | 2008
Ugo Faraguna; Vladyslav V. Vyazovskiy; Aaron B. Nelson; Giulio Tononi; Chiara Cirelli
Slow-wave activity (SWA), the EEG power between 0.5 and 4 Hz during non-rapid eye movement (NREM) sleep, is one of the best characterized markers of sleep need, because it increases as a function of preceding waking duration and decreases during sleep, but the underlying mechanisms remain unknown. We hypothesized that SWA is high at sleep onset because it reflects the occurrence, during the previous waking period, of widespread synaptic potentiation in cortical and subcortical areas. Consistent with this hypothesis, we recently showed that the more rats explore, the stronger is the cortical expression of BDNF during wakefulness, and the larger is the increase in SWA during the subsequent sleep period. There is compelling evidence that BDNF plays a causal role in synaptic potentiation, and exogenous application of BDNF in vivo is sufficient to induce long-term increases in synaptic strength. We therefore performed cortical unilateral microinjections of BDNF in awake rats and measured SWA during the subsequent sleep period. SWA during NREM sleep was higher in the injected hemisphere relative to the contralateral one. The effect was reversible within 2 h, and did not occur during wakefulness or rapid eye movement sleep. Asymmetries in NREM SWA did not occur after vehicle injections. Furthermore, microinjections, during wakefulness, of a polyclonal anti-BDNF antibody or K252a, an inhibitor of BDNF TrkB receptors, led to a local SWA decrease during the following sleep period. These effects were also reversible and specific for NREM sleep. These results show a causal link between BDNF expression during wakefulness and subsequent sleep regulation.Slow wave activity (SWA), the EEG power between 0.5 - 4 Hz during NREM sleep, is one of the best characterized markers of sleep need, as it increases as a function of preceding waking duration and decreases during sleep, but the underlying mechanisms remain unknown. We hypothesized that SWA is high at sleep onset because it reflects the occurrence, during the previous waking period, of widespread synaptic potentiation in cortical and subcortical areas. Consistent with this hypothesis, we recently showed that the more rats explore, the stronger is the cortical expression of BDNF during wakefulness, and the larger is the increase in SWA during the subsequent sleep period. There is compelling evidence that BDNF plays a causal role in synaptic potentiation, and exogenous application of BDNF in vivo is sufficient to induce long-term increases in synaptic strength. We therefore performed cortical unilateral microinjections of BDNF in awake rats and measured SWA during the subsequent sleep period. SWA during NREM sleep was higher in the injected hemisphere relative to the contralateral one. The effect was reversible within 2 hours, and did not occur during wakefulness or REM sleep. Asymmetries in NREM SWA did not occur after vehicle injections. Furthermore, microinjections, during wakefulness, of a polyclonal anti-BDNF antibody or K252a, an inhibitor of BDNF TrkB receptors, led to a local SWA decrease during the following sleep period. These effects were also reversible and specific for NREM sleep. These results show a causal link between BDNF expression during wakefulness and subsequent sleep regulation.
Brain Research | 2005
Vladyslav V. Vyazovskiy; Irene Tobler
In humans, EEG power in the theta frequency band (5-8 Hz) during quiet waking increases during sleep deprivation (SD), and predicts the subsequent homeostatic increase of sleep slow-wave activity (SWA; EEG power between 0.5 and 4.0 Hz). These findings indicate that theta power in waking is an EEG variable, which reflects the rise in sleep propensity. In rodents, a number of short sleep attempts, as well as SWA in the waking EEG increase in the course of SD, but neither variable predicts the subsequent homeostatic increase of EEG SWA during recovery sleep. To investigate whether there is an EEG marker for sleep propensity also in rodents, the EEG of the rat was recorded during 6 h SD in the first half of the light period (SDL, n = 7). During SDL, power of the waking EEG showed an increase in the delta (1.5-4 Hz) and low theta (5-6.5 Hz) band. Based on the neck muscle EMG, wakefulness was subdivided into active (high EMG activity) and quiet (low EMG activity) waking. During quiet waking, the theta peak occurred at 5.5 Hz, the frequency at which the increase of EEG power during SD was most pronounced. This increase was due to higher amplitude of theta waves, while wave incidence (frequency) was unchanged. Correlation analysis showed that the rise in EEG power in the 5-7 Hz band during SD predicted the subsequent enhancement of SWA in non-rapid eye movement sleep. The analysis of data of a further batch of rats which were sleep deprived for 6 h after dark onset (SDD, n = 7) revealed a significant increase in theta-wave amplitude during the SD and a tendency for a similar, positive correlation between the increase of theta power (5-7 Hz) and subsequent SWA. The results indicate that in rats, as in humans, a specific waking EEG frequency, i.e., theta power in quiet waking is a marker of sleep propensity.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Susan Leemburg; Vladyslav V. Vyazovskiy; Umberto Olcese; Claudio L. Bassetti; Giulio Tononi; Chiara Cirelli
Sleep is homeostatically regulated in all animal species that have been carefully studied so far. The best characterized marker of sleep homeostasis is slow wave activity (SWA), the EEG power between 0.5 and 4 Hz during nonrapid eye movement (NREM) sleep. SWA reflects the accumulation of sleep pressure as a function of duration and/or intensity of prior wake: it increases after spontaneous wake and short-term (3–24 h) sleep deprivation and decreases during sleep. However, recent evidence suggests that during chronic sleep restriction (SR) sleep may be regulated by both allostatic and homeostatic mechanisms. Here, we performed continuous, almost completely artifact-free EEG recordings from frontal, parietal, and occipital cortex in freely moving rats (n = 11) during and after 5 d of SR. During SR, rats were allowed to sleep during the first 4 h of the light period (4S+) but not during the following 20 h (20S−). During the daily 20S− most sleep was prevented, whereas the number of short (<20 s) sleep attempts increased. Low-frequency EEG power (1–6 Hz) in both sleep and wake also increased during 20S−, most notably in the occipital cortex. In all animals NREM SWA increased above baseline levels during the 4S+ periods and in post-SR recovery. The SWA increase was more pronounced in frontal cortex, and its magnitude was determined by the efficiency of SR. Analysis of cumulative slow wave energy demonstrated that the loss of SWA during SR was compensated by the end of the second recovery day. Thus, the homeostatic regulation of sleep is preserved under conditions of chronic SR.
BMC Biology | 2007
Christopher L Douglas; Vladyslav V. Vyazovskiy; Teresa Southard; Shing Yan Chiu; Albee Messing; Giulio Tononi; Chiara Cirelli
BackgroundShaker codes for a Drosophila voltage-dependent potassium channel. Flies carrying Shaker null or hypomorphic mutations sleep 3–4 h/day instead of 8–14 h/day as their wild-type siblings do. Shaker-like channels are conserved across species but it is unknown whether they affect sleep in mammals. To address this issue, we studied sleep in Kcna2 knockout (KO) mice. Kcna2 codes for Kv1.2, the alpha subunit of a Shaker-like voltage-dependent potassium channel with high expression in the mammalian thalamocortical system.ResultsContinuous (24 h) electroencephalograph (EEG), electromyogram (EMG), and video recordings were used to measure sleep and waking in Kcna2 KO, heterozygous (HZ) and wild-type (WT) pups (P17) and HZ and WT adult mice (P67). Sleep stages were scored visually based on 4-s epochs. EEG power spectra (0–20 Hz) were calculated on consecutive 4-s epochs. KO pups die by P28 due to generalized seizures. At P17 seizures are either absent or very rare in KO pups (< 1% of the 24-h recording time), and abnormal EEG activity is only present during the seizure. KO pups have significantly less non-rapid eye movement (NREM) sleep (-23%) and significantly more waking (+21%) than HZ and WT siblings with no change in rapid eye movement (REM) sleep time. The decrease in NREM sleep is due to an increase in the number of waking episodes, with no change in number or duration of sleep episodes. Sleep patterns, daily amounts of sleep and waking, and the response to 6 h sleep deprivation are similar in HZ and WT adult mice.ConclusionKv1.2, a mammalian homologue of Shaker, regulates neuronal excitability and affects NREM sleep.