Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vlastimil Dohnal is active.

Publication


Featured researches published by Vlastimil Dohnal.


Drug Metabolism Reviews | 2009

Biological degradation of aflatoxins

Qinghua Wu; Alena Jezkova; Zonghui Yuan; Lucie Pavlíková; Vlastimil Dohnal; Kamil Kuca

Aflatoxins are cancerogenic compounds produced predominantly by certain strains of the Aspergillus genus. The ideal solution for minimization of health risk that aflatoxins pose is the prevention of foods and feeds contamination. Unfortunately, these contaminants can never be completely removed, and on that account, many studies have been carried out to explore an effective process of their detoxification to a threshold level. Biological decontamination seems to be attractive because it works under mild, environmentally friendly conditions. This review is focused on the biological detoxification of aflatoxins, especially aflatoxin B1, by microorganisms. There are briefly mentioned aflatoxin metabolic pathways in the human and animal body. Microorganisms such as soil or water bacteria, fungi, and protozoa and specific enzymes isolated from microbial systems can degrade aflatoxin group members with varied efficiency to less- or nontoxic products. Some aflatoxin-producing fungi from Aspergillus species have the capability to degrade their own synthesized mycotoxins. Yeasts and lactic acid bacteria work as biological adsorbents that prevent aflatoxin’s transfer to the intestinal tract of humans and animals. Aflatoxin B1 absorbed into the organism could be metabolized by significantly different pathways. They lead to the production of the relatively nontoxic compounds, on the one hand, or to highly toxic active forms on the other hand.


Archives of Toxicology | 2014

Oxidative stress‑mediated cytotoxicity and metabolism of T‑2 toxin and deoxynivalenol in animals and humans: an update

Qinghua Wu; Xu Wang; Wei Yang; Andreas K. Nussler; Lingyun Xiong; Kamil Kuca; Vlastimil Dohnal; Xiujuan Zhang; Zonghui Yuan

Abstract Trichothecenes are a large family of structurally related toxins mainly produced by Fusarium genus. Among the trichothecenes, T-2 toxin and deoxynivalenol (DON) cause the most concern due to their wide distribution and highly toxic nature. Trichothecenes are known for their inhibitory effect on eukaryotic protein synthesis, and oxidative stress is one of their most important underlying toxic mechanisms. They are able to generate free radicals, including reactive oxygen species, which induce lipid peroxidation leading to changes in membrane integrity, cellular redox signaling, and in the antioxidant status of the cells. The mitogen-activated protein kinases signaling pathway is induced by oxidative stress, which also induces caspase-mediated cellular apoptosis pathways. Several new metabolites and novel metabolic pathways of T-2 toxin have been discovered very recently. In human cell lines, HT-2 and neosolaniol (NEO) are the major metabolites of T-2 toxin. Hydroxylation on C-7 and C-9 are two novel metabolic pathways of T-2 toxin in rats. The metabolizing enzymes CYP3A22, CYP3A29, and CYP3A46 in pigs, as well as the enzymes CYP1A5 and CYP3A37 in chickens, are able to catalyze T-2 toxin and HT-2 toxin to form the C-3′–OH metabolites. Similarly to carboxylesterase, CYP3A29 possesses the hydrolytic ability in pigs to convert T-2 toxin to NEO. T-2 toxin is able to down- or upregulate cytochrome P-450 enzymes in different species. The metabolism of DON in humans is region-dependent. Free DON and DON-glucuronide are considered to be the biomarkers for humans. The masked mycotoxin DON-3-β-d-glucoside can be hydrolyzed to free DON in the body. This review will provide useful information on the progress of oxidative stress as well as on the metabolism and the metabolizing enzymes of T-2 toxin and DON. Moreover, the literature will throw light on the blind spots of metabolism and toxicological studies in trichothecenes that have to be explored in the future.


Current Drug Metabolism | 2011

Metabolic pathways of ochratoxin A.

Qinghua Wu; Vlastimil Dohnal; Lingli Huang; Kamil Kuca; Xu Wang; Guyue Chen; Zonghui Yuan

Ochratoxin A (OTA) as a carcinogenic of group 2B to humans is produced by various fungi strains as Aspergillus and Penicillium. It is one of the most common contaminant in foodstuff. OTA is nephrotoxic, hepatotoxic, teratogenic, and immunotoxic and is assumed to cause Balkan Endemic Nephropathy (BEN), a chronic kidney disease in humans when it is digested in combination with mycotoxin citrinin. The metabolism affects greatly the fates and the toxicity of a mycotoxins in humans, animals, and plants. The understanding of the metabolism of mycotoxins by the organism as fungi, yeast, bacteria and enzymes would be very helpful for the control of the contamination by the mycotoxins in foods and feeds, and understanding of the biotransformation of the mycotoxin in the body of humans, animals, plants, microorganisms would be beneficial to the risk assessment of food safety. In animals and humans, OTA can be metabolized in the kidney, liver and intestines. Hydrolysis, hydroxylation, lactone-opening and conjugation are the major metabolic pathways. OTalpha (OTα) formed by the cleavage of the peptidic bond in OTA is a major metabolite not only in animals and humans, but also in microorganisms and enzyme systems. It is considered as a nontoxic product. However, the lactone-opened product (OP-OTA), found in rodents, is higher toxic than its parent, OTA.. (4R)-4-OH-OTA is the major hydroxy product in rodents, whereas the 4S isomer is the major in pigs. 10-OH-OTA is currently found only in rabbits. Furthermore, OTA can lose the chlorine on C-5 to produce ochratoxin B (OTB), and OTB is further to 4-OH-OTB and ochratoxin β (OTβ). Ochratoxin quinine/hydroquinone (OTQ/OTHQ) is the metabolite of OTA in animals. In addition, the conjugates of OTA such as hexose and pentose conjugates can be found in animals. Such more polar metabolites make OTA to eliminate faster. Currently, a debate exits on the formation of OTA-DNA adducts. Plants can metabolize OTA as well. OH-OTA methyl ester and OH-OTA-β-glucoside are formed in many plants besides OTα and OH-OTA. OTA can be biotransformed into OTα by some yeast strains. Fungi can produce some of the same metabolites as animals. OTα, OTβ, 4-R-OH-OTA, 4-R-OH-OTB, and 10-OH-OTA are the metabolites in fungi. Several commercial enzymes are able to biodegrade OTA into the nontoxic OTα efficiently. This review on the metabolism of OTA helps to well understand the fate of OTA in different organisms, as well as provides very crucial information for toxicology and food safety assessments on human health.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2008

Synthesis of monooxime-monocarbamoyl bispyridinium compounds bearing (E)-but-2-ene linker and evaluation of their reactivation activity against tabun- and paraoxon-inhibited acetylcholinesterase.

Kamil Musilek; Ondrej Holas; Kamil Kuca; Daniel Jun; Vlastimil Dohnal; Veronika Opletalova; Martin Dolezal

Six AChE monooxime-monocarbamoyl reactivators with an (E)-but-2-ene linker were synthesized using modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and insecticide paraoxon was tested in vitro. The reactivation efficacies of pralidoxime, HI-6, obidoxime, K048, K075 and the newly prepared reactivators were compared. According to the results obtained, one reactivator seems to be promising against tabun-inhibited AChE and two reactivators against paraoxon-inhibited AChE. The best results were obtained for bisquaternary substances with at least one oxime group in position four.


Archives of Toxicology | 2014

Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences

Vlastimil Dohnal; Qinghua Wu; Kamil Kuca

Aflatoxins are potent hepatocarcinogen in animal models and suspected carcinogen in humans. The most important aflatoxin in terms of toxic potency and occurrence is aflatoxin B1 (AFB1). In this review, we mainly summarized the key metabolizing enzymes of AFB1 in animals and humans. Moreover, the interindividual and the interspecies differences in AFB1 metabolism are highly concerned. In human liver, CYP3A4 plays an important role in biotransforming AFB1 to the toxic product AFB1-8,9-epoxide. In human lung, CYP2A13 has a significant activity in metabolizing AFB1 to AFB1-8,9-epoxide and AFM1-8,9-epoxide. The epoxide of AFB1-8,9-epoxide could conjugate with glutathione to reduce the toxicity by glutathione-S-transferase (GST). In poultry species, CYP2A6, CYP3A37, CYP1A5, and CYP1A1 are responsible for bioactivation of AFB1. There are interindividual variations in the rate of activation of aflatoxins in various species, and there are also differences between children and adults. The age and living regions are important factors affecting resistance of species to AFB1. The rate of AFB1-8,9-epoxide formation and its conjugation with glutathione are key parameters in interspecies and interindividual differences in sensitivity to the toxic effect of AFB1. This review provides an important information for key metabolizing enzymes and the global metabolism of aflatoxins in different species.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2005

Synthesis of a novel series of bispyridinium compounds bearing a xylene linker and evaluation of their reactivation activity against chlorpyrifos-inhibited acetylcholinesterase

Kamil Musilek; Kamil Kuca; Daniel Jun; Vlastimil Dohnal; Martin Dolezal

Nine potential AChE reactivators were synthesized using a modification of currently known synthetic pathways. Their potency to reactivate AChE inhibited by insecticide chlorpyrifos was tested in vitro. 2,2′-Bis(hydroxyiminomethyl)-1,1′-(1,4-phenylenedimethyl)-bispyridinium dibromide seems to be the most potent AChE reactivator. The reactivation potency of these compounds depends on structural factors such as length of the linking chain between both pyridinium rings and position of the oxime moiety on the pyridinium ring.


Bioorganic & Medicinal Chemistry Letters | 2010

Synthesis and in vitro evaluation of N-alkyl-7-methoxytacrine hydrochlorides as potential cholinesterase inhibitors in Alzheimer disease

Jan Korabecny; Kamil Musilek; Ondrej Holas; Jiri Binder; Filip Zemek; Jan Marek; Miroslav Pohanka; Veronika Opletalova; Vlastimil Dohnal; Kamil Kuca

All approved drugs for Alzheimer disease (AD) in clinical practice ameliorate the symptoms of the disease. Among them, acetylcholinesterase inhibitors (AChEIs) are used to increase the cholinergic activity. Among new AChEI, tacrine compounds were found to be more toxic compared to 7-MEOTA (9-amino-7-methoxy-1,2,3,4-tetrahydroacridine). In this Letter, series of 7-MEOTA analogues (N-alkyl-7-methoxytacrine) were synthesized. Their inhibitory ability was evaluated on recombinant human acetylcholinesterase (AChE) and plasmatic human butyrylcholinesterase (BChE). Three novel compounds showed promising results towards hAChE better to THA or 7-MEOTA. Three compounds resulted as potent inhibitors of hBChE. The SAR findings highlighted the C(6)-C(7)N-alkyl chains for cholinesterase inhibition.


Journal of Enzyme Inhibition and Medicinal Chemistry | 2007

Synthesis of a novel series of non-symmetrical bispyridinium compounds bearing a xylene linker and evaluation of their reactivation activity against tabun and paraoxon-inhibited acetylcholinesterase

Kamil Musilek; Ondrej Holas; Kamil Kuca; Daniel Jun; Vlastimil Dohnal; Martin Dolezal

Nine potential non-symmetrical xylene-bridged AChE reactivators were synthesized using modifications of currently known synthetic pathways. Their potency to reactivate AChE inhibited by the nerve agent tabun and the insecticide paraoxon together with nine symmetrical xylene-bridged compounds, was tested in vitro. Seven compounds were promising against paraoxon-inhibited AChE. Two compounds were found to be more potent against tabun-inhibited AChE than obidoxime at a concentration applicable in vivo.


Archives of Toxicology | 2014

Deoxynivalenol: signaling pathways and human exposure risk assessment--an update.

Zhonghong Wang; Qinghua Wu; Kamil Kuca; Vlastimil Dohnal; Zhihong Tian

Deoxynivalenol (DON) is a group B trichothecene and a common contaminant of crops worldwide. This toxin is known to cause a spectrum of diseases in animals and humans such as vomiting and gastroenteritis. Importantly, DON could inhibit the synthesis of protein and nucleonic acid and induce cell apoptosis in eukaryote cells. The transduction of signaling pathways is involved in the underlying mechanism of the cytotoxicity of DON. Mitogen-activated protein kinase and Janus kinase/signal transducer and activator of transcription seem to be two important signaling pathways and induce the inflammatory response by modulating the binding activates of specific transcription factors. This review mainly discussed the toxic mechanism of DON from the vantage point of signaling pathways and also assessed the profiles of DON and its metabolites in humans. Importantly, we conducted a human exposure risk assessment of DON from cereals, cereal-based foods, vegetables, water, and animal-derived foods in different countries. Some regular patterns of DON occurrence in these countries are suggested based on an analysis of global contamination with DON. This review should provide further insight for the toxic mechanism study of DON and human exposure risk assessment, thereby facilitating mycotoxin control strategies.


Current Drug Metabolism | 2013

Trichothecenes: Structure-Toxic Activity Relationships

Qinghua Wu; Vlastimil Dohnal; Kami Kuca; Zonghui Yuan

Trichothecenes comprise a large family of structurally related toxins mainly produced by fungi belonging to the genus Fusarium. Among trichothecenes, type A and type B are of the most concern due to their broad and highly toxic nature. In order to address structure-activity relationships (SAR) of trichothecenes, relationships between structural features and biological effects of trichothecene mycotoxins in mammalian systems are summarized in this paper. The double bond between C-9-C-10 and the 12,13-epoxide ring are essential structural features for trichothecene toxicity. Removal of these groups results in a complete loss of toxicity. A hydroxyl group at C-3 enhances trichothecene toxicity, while this activity decreases gradually when C-3 is substituted with either hydrogen or an acetoxy group. The presence of a hydroxyl group at C-4 promotes slightly lower toxicity than an acetoxy group at the same position. The toxicity for type B trichothecenes decreases if the substituent at C-4 is changed from acetoxy to hydroxyl or hydrogen at C-4 position. The presence of hydroxyl and hydrogen groups on C-15 decreases the trichothecene toxicity in comparison with an acetoxy group attached to this carbon. Trichothecenes toxicity increases when a macrocyclic ring exists between the C-4 and C-15. At C-8 position, an oxygenated substitution at C-8 is essential for trichothecene toxicity, indicating a decrease in the toxicity if substituent change from isovaleryloxy through hydrogen to the hydroxyl group. The presence of a second epoxy ring at C-7-C-8 reduces the toxicity, whereas epoxidation at C-9-C-10 of some macrocyclic trichothecenes increases the activity. Conjugated trichothecenes could release their toxic precursors after hydrolysis in animals, and present an additional potential risk. The SAR study of trichothecenes should provide some crucial information for a better understanding of trichothecene chemical and biological properties in food contamination.

Collaboration


Dive into the Vlastimil Dohnal's collaboration.

Top Co-Authors

Avatar

Kamil Kuca

University of Hradec Králové

View shared research outputs
Top Co-Authors

Avatar

Kamil Musilek

University of Hradec Králové

View shared research outputs
Top Co-Authors

Avatar

Ondrej Holas

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Dolezal

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Veronika Opletalova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marketa Komloova

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar

Zonghui Yuan

Huazhong Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge