Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vlastimil Srsen is active.

Publication


Featured researches published by Vlastimil Srsen.


Nucleus | 2012

The nuclear envelope proteome differs notably between tissues.

Nadia Korfali; Gavin S. Wilkie; Selene K. Swanson; Vlastimil Srsen; Jose I. de las Heras; Dzmitry G. Batrakou; Poonam Malik; Nikolaj Zuleger; Alastair Kerr; Laurence Florens; Eric C. Schirmer

One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues.


Molecular & Cellular Proteomics | 2010

The Leukocyte Nuclear Envelope Proteome Varies with Cell Activation and Contains Novel Transmembrane Proteins That Affect Genome Architecture

Nadia Korfali; Gavin S. Wilkie; Selene K. Swanson; Vlastimil Srsen; Dzmitry G. Batrakou; Elizabeth A.L. Fairley; Poonam Malik; Nikolaj Zuleger; Alexander Goncharevich; Jose I. de las Heras; David A. Kelly; Alastair Kerr; Laurence Florens; Eric C. Schirmer

A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.


Journal of Cell Biology | 2006

Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle

Vlastimil Srsen; Nicole Gnadt; Alexander Dammermann; Andreas Merdes

Previous evidence has indicated that an intact centrosome is essential for cell cycle progress and that elimination of the centrosome or depletion of individual centrosome proteins prevents the entry into S phase. To investigate the molecular mechanisms of centrosome-dependent cell cycle progress, we performed RNA silencing experiments of two centrosome-associated proteins, pericentriolar material 1 (PCM-1) and pericentrin, in primary human fibroblasts. We found that cells depleted of PCM-1 or pericentrin show lower levels of markers for S phase and cell proliferation, including cyclin A, Ki-67, proliferating cell nuclear antigen, minichromosome maintenance deficient 3, and phosphorylated retinoblastoma protein. Also, the percentage of cells undergoing DNA replication was reduced by >50%. At the same time, levels of p53 and p21 increased in these cells, and cells were predisposed to undergo senescence. Conversely, depletion of centrosome proteins in cells lacking p53 did not cause any cell cycle arrest. Inhibition of p38 mitogen-activated protein kinase rescued cell cycle activity after centrosome protein depletion, indicating that p53 is activated by the p38 stress pathway.


Molecular & Cellular Proteomics | 2011

Several Novel Nuclear Envelope Transmembrane Proteins Identified in Skeletal Muscle Have Cytoskeletal Associations

Gavin S. Wilkie; Nadia Korfali; Selene K. Swanson; Poonam Malik; Vlastimil Srsen; Dzmitry G. Batrakou; Jose I. de las Heras; Nikolaj Zuleger; Alastair Kerr; Laurence Florens; Eric C. Schirmer

Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights.


Nucleus | 2013

Tissue specificity in the nuclear envelope supports its functional complexity

Jose I. de las Heras; Peter Meinke; Dzmitry G. Batrakou; Vlastimil Srsen; Nikolaj Zuleger; Alastair Kerr; Eric C. Schirmer

Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.


Cellular and Molecular Life Sciences | 2010

Cell-specific and lamin-dependent targeting of novel transmembrane proteins in the nuclear envelope

Poonam Malik; Nadia Korfali; Vlastimil Srsen; Vassiliki Lazou; Dzmitry G. Batrakou; Nikolaj Zuleger; Deirdre M. Kavanagh; Gavin S. Wilkie; Martin W. Goldberg; Eric C. Schirmer

Nuclear envelope complexity is expanding with respect to identification of protein components. Here we test the validity of proteomics results that identified 67 novel predicted nuclear envelope transmembrane proteins (NETs) from liver by directly comparing 30 as tagged fusions using targeting assays. This confirmed 21 as NETs, but 4 only targeted in certain cell types, underscoring the complexity of interactions that tether NETs to the nuclear envelope. Four NETs accumulated at the nuclear rim in normal fibroblasts but not in fibroblasts lacking lamin A, suggesting involvement of lamin A in tethering them in the nucleus. However, intriguingly, for the NETs tested alternative mechanisms for nuclear envelope retention could be found in Jurkat cells that normally lack lamin A. This study expands by a factor of three the number of liver NETs analyzed, bringing the total confirmed to 31, and shows that several have multiple mechanisms for nuclear envelope retention.


BMC Cell Biology | 2009

Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation

Vlastimil Srsen; Xavier Fant; Rebecca Heald; Catherine Rabouille; Andreas Merdes

BackgroundMuscle fibres are formed by elongation and fusion of myoblasts into myotubes. During this differentiation process, the cytoskeleton is reorganized, and proteins of the centrosome re-localize to the surface of the nucleus. The exact timing of this event, and the underlying molecular mechanisms are still poorly understood.ResultsWe performed studies on mouse myoblast cell lines that were induced to differentiate in culture, to characterize the early events of centrosome protein re-localization. We demonstrate that this re-localization occurs already at the single cell stage, prior to fusion into myotubes. Centrosome proteins that accumulate at the nuclear surface form an insoluble matrix that can be reversibly disassembled if isolated nuclei are exposed to mitotic cytoplasm from Xenopus egg extract. Our microscopy data suggest that this perinuclear matrix of centrosome proteins consists of a system of interconnected fibrils.ConclusionOur data provide new insights into the reorganization of centrosome proteins during muscular differentiation, at the structural and biochemical level. Because we observe that centrosome protein re-localization occurs early during differentiation, we believe that it is of functional importance for the reorganization of the cytoskeleton in the differentiation process.


Biomicrofluidics | 2012

Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy

Massimo Muratore; Vlastimil Srsen; Martin Waterfall; Andrew Downes; Ronald Pethig

Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.


Cell Division | 2006

The centrosome and cell proliferation

Vlastimil Srsen; Andreas Merdes

Centrosomes are frequently amplified in cancer cells. Increased numbers of centrosomes can give rise to multipolar spindles in mitosis, and thereby lead to the formation of aneuploid daughter cells. However, whether centrosome amplification is a cause or a consequence of cancer is unclear. In contrast, loss of a functional centrosome has been shown to lead to cell cycle arrest. In this review, the potential mechanisms underlying centrosome amplification and centrosome-dependent cell cycle regulation are discussed.


PLOS ONE | 2009

Nuclei of non-muscle cells bind centrosome proteins upon fusion with differentiating myoblasts.

Xavier Fant; Vlastimil Srsen; Aude Espigat-Georger; Andreas Merdes

Background In differentiating myoblasts, the microtubule network is reorganized from a centrosome-bound, radial array into parallel fibres, aligned along the long axis of the cell. Concomitantly, proteins of the centrosome relocalize from the pericentriolar material to the outer surface of the nucleus. The mechanisms that govern this relocalization are largely unknown. Methodology In this study, we perform experiments in vitro and in cell culture indicating that microtubule nucleation at the centrosome is reduced during myoblast differentiation, while nucleation at the nuclear surface increases. We show in heterologous cell fusion experiments, between cultures of differentiating mouse myoblasts and human cells of non-muscular origin, that nuclei from non-muscle cells recruit centrosome proteins once fused with the differentiating myoblasts. This recruitment still occurs in the presence of cycloheximide and thus appears to be independent of new protein biosynthesis. Conclusions Altogether, our data suggest that nuclei of undifferentiated cells have the dormant potential to bind centrosome proteins, and that this potential becomes activated during myoblast differentiation.

Collaboration


Dive into the Vlastimil Srsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Poonam Malik

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Meinke

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge