Vojtěch Sedláček
Masaryk University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vojtěch Sedláček.
Journal of Separation Science | 2009
Jindra Musilová; Vojtěch Sedláček; Igor Kučera; Zdeněk Glatz
The main aim of this work was to demonstrate the applicability of capillary zone electrophoresis in combination with field enhanced sample stacking in targeted metabolome analyses of adenine nucleotides--AMP, ADP, ATP, coenzymes NAD(+), NADP(+) and their reduced forms in Paracoccus denitrificans. Sodium carbonate/hydrogencarbonate buffer (100 mM, pH 9.6) with the addition of beta-CD at a concentration of 10 mM was found to be an effective BGE for their separation within 20 min. Besides this, special attention was paid to the development of the procedure for the extraction of specific metabolites from the bacterium P. denitrificans. This procedure was not only optimised to achieve the highest metabolite yields but also to obtain a sample that was fully compatible with the online preconcetration strategy used. The developed methodology was finally applied in a study of the bacterium P. denitrificans at various stages of the active respiratory chain.
PLOS ONE | 2014
Vojtěch Sedláček; Tomáš Klumpler; Jaromír Marek; Igor Kučera
FerB from Paracoccus denitrificans is a soluble cytoplasmic flavoprotein that accepts redox equivalents from NADH or NADPH and transfers them to various acceptors such as quinones, ferric complexes and chromate. The crystal structure and small-angle X-ray scattering measurements in solution reported here reveal a head-to-tail dimer with two flavin mononucleotide groups bound at the opposite sides of the subunit interface. The dimers tend to self-associate to a tetrameric form at higher protein concentrations. Amino acid residues important for the binding of FMN and NADH and for the catalytic activity are identified and verified by site-directed mutagenesis. In particular, we show that Glu77 anchors a conserved water molecule in close proximity to the O2 of FMN, with the probable role of facilitating flavin reduction. Hydride transfer is shown to occur from the 4-pro-S position of NADH to the solvent-accessible si side of the flavin ring. When using deuterated NADH, this process exhibits a kinetic isotope effect of about 6 just as does the NADH-dependent quinone reductase activity of FerB; the first, reductive half-reaction of flavin cofactor is thus rate-limiting. Replacing the bulky Arg95 in the vicinity of the active site with alanine substantially enhances the activity towards external flavins that obeys the standard bi-bi ping-pong reaction mechanism. The new evidence for a cryptic flavin reductase activity of FerB justifies the previous inclusion of this enzyme in the protein family of NADPH-dependent FMN reductases.
Archives of Biochemistry and Biophysics | 2009
Vojtěch Sedláček; Rob J.M. van Spanning; Igor Kučera
The ferric reductase B (FerB) protein of Paracoccus denitrificans exhibits activity of an NAD(P)H: Fe(III) chelate, chromate and quinone oxidoreductase. Sequence analysis places FerB in a family of soluble flavin-containing quinone reductases. The enzyme reduces a range of quinone substrates, including derivatives of 1,4-benzoquinone and 1,2- and 1,4-naphthoquinone, via a ping-pong kinetic mechanism. Dicoumarol and Cibacron Blue 3GA are competitive inhibitors of NADH oxidation. In the case of benzoquinones, FerB apparently acts through a two-electron transfer process, whereas in the case of naphthoquinones, one-electron reduction takes place resulting in the formation of semiquinone radicals. A ferB mutant strain exhibited an increased resistance to 1,4-naphthoquinone, attributable to the absence of the FerB-mediated redox cycling. The ferB promoter displayed a high basal activity throughout the growth of P. denitrificans, which could not be further enhanced by addition of different types of naphthoquinones. This indicates that the ferB gene is expressed constitutively.
Protein Expression and Purification | 2009
Radek Tesařík; Vojtěch Sedláček; Jana Plocková; Michaela Wimmerová; Jaroslav Turánek; Igor Kučera
FerB is a flavoenzyme capable of reducing quinones, ferric complexes and chromate. Its expression in Escherichia coli as a hexahistidine fusion resulted in a functional product only when the tag was placed on the C-terminus. The molecular mass values estimated by gel permeation chromatography were compatible with the existence of either dimer or trimer, whereas the light scattering data, together with cross-linking experiments that yielded exclusively monomer and dimer bands on dodecyl sulfate-polyacrylamide gels, strongly supported a dimeric nature of both native and tagged form of FerB. These two proteins also exhibited almost identical secondary structure as judged by Fourier transform infra red spectrometry. The presence of tag, however, shifted the temperature of thermal inactivation as well as the thermal denaturation curve towards lower temperatures. Despite somewhat lower thermal stability, the fusion protein is considered a better candidate for crystallization than the wild-type one due to a more negative value of its second optical viral coefficient.
Journal of Proteomics | 2015
Vendula Pernikářová; Vojtěch Sedláček; David Potěšil; Iva Procházková; Zbyněk Zdráhal; Pavel Bouchal; Igor Kučera
FerB is a cytoplasmic flavoprotein from the soil bacterium Paracoccus denitrificans with a putative role in defense against oxidative stress. To further explore this hypothesis, we compared protein variations upon methyl viologen treatment in wild-type and FerB mutant strains by a quantitative proteomic analysis based on iTRAQ-3DLC-MS/MS analysis. The proteins showing the most prominent increase in abundance were assigned to carbon fixation and sulfur assimilatory pathways. By employing these proteins as indirect markers, oxidative stress was found to be 15% less severe in the wild-type than in the FerB-deficient mutant cells. Oxidative stress altered the levels of proteins whose expression is dependent on the transcriptional factor FnrP. The observed down-regulation of the fnrP regulon members, most notably that of nitrous oxide reductase, was tentatively explained by an oxidative degradation of the [4Fe-4S] center of FnrP leading to a protein form which no longer activates transcription. While the level of FerB remained relatively constant, two proteins homologous to FerB accumulated during oxidative stress. When their genes were expressed in Escherichia coli, neither of the protein products contained a bound flavin, whereas they both had a high activity of flavin reductase, one preferentially utilizing NADH and the other NADPH.
Folia Microbiologica | 2011
Adéla Illichmanová; Miroslava Janů; Vojtěch Sedláček; Igor Kučera
A comparative examination of reduced methyl [MV·]+ and benzyl [BV·]+ viologens (as artificial electron donors for quantitative estimation of the respiratory periplasmic (Nap) and membrane-embedded (Nar) nitrate reductases) using a newly constructed nap mutant strain of Paracocccus denitrificans was done. The activity with [MV·]+ was high in whole-cell assays, confirming that this compound donates electrons to Nar. Initial rates of the more lipophilic [BV·]+ were considerably lower, which was interpreted to be caused by an inhibition of the active transport of nitrate into the cells. Anionophoric activity of [BV·]+ was detectable but too low to effectively circumvent the inhibition of nitrate transporter.
Acta Crystallographica Section F-structural Biology and Crystallization Communications | 2010
Tomáš Klumpler; Vojtěch Sedláček; Jaromír Marek; Michaela Wimmerová; Igor Kučera
The flavin-dependent enzyme FerB from Paracoccus denitrificans reduces a broad range of compounds, including ferric complexes, chromate and most notably quinones, at the expense of the reduced nicotinamide adenine dinucleotide cofactors NADH or NADPH. Recombinant unmodified and SeMet-substituted FerB were crystallized under similar conditions by the hanging-drop vapour-diffusion method with microseeding using PEG 4000 as the precipitant. FerB crystallized in several different crystal forms, some of which diffracted to approximately 1.8 A resolution. The crystals of native FerB belonged to space group P2(1), with unit-cell parameters a = 61.6, b = 110.1, c = 65.2 A, beta = 118.2 degrees and four protein molecules in the asymmetric unit, whilst the SeMet-substituted form crystallized in space group P2(1)2(1)2, with unit-cell parameters a = 61.2, b = 89.2, c = 71.5 A and two protein molecules in the asymmetric unit. Structure determination by the three-wavelength MAD/MRSAD method is now in progress.
Data in Brief | 2015
Vendula Pernikářová; Vojtěch Sedláček; David Potěšil; Iva Procházková; Zbyněk Zdráhal; Pavel Bouchal; Igor Kučera
3DLC protein- and peptide-fractionation technique combined with iTRAQ-peptide labeling and Orbitrap mass spectrometry was employed to quantitate Paracoccus dentirificans total proteome with maximal coverage. This resulted in identification of 24,948 peptides representing 2627 proteins (FDR<0.01) in P. dentirificans wild type and ferB mutant strains grown in the presence or absence of methyl viologen as an oxidative stressor. The data were generated for assessment of FerB protein role in oxidative stress as published by Pernikářová et al.; proteomic responses to a methyl viologen-induced oxidative stress in the wild type and FerB mutant strains of P. denitrificans, J. Proteomics 2015;125:68–75. Dataset is supplied in the article.
FEBS Journal | 2004
Jiří Mazoch; Radek Tesařík; Vojtěch Sedláček; Igor Kučera; Jaroslav Turánek
Archives of Microbiology | 2010
Vojtěch Sedláček; Igor Kučera