Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volkan Özenci is active.

Publication


Featured researches published by Volkan Özenci.


Journal of Clinical Microbiology | 2013

Clinical Evaluation of the FilmArray Blood Culture Identification Panel in Identification of Bacteria and Yeasts from Positive Blood Culture Bottles

Osman Altun; Mohammed Almuhayawi; Måns Ullberg; Volkan Özenci

ABSTRACT The FilmArray platform (FA; BioFire, Salt Lake City, UT) is a closed diagnostic system allowing high-order multiplex PCR analysis with automated readout of results directly from positive blood cultures in 1 h. In the present study, we evaluated the clinical performance of the FilmArray blood culture identification (BCID) panel, which includes 19 bacteria, five yeasts, and three antibiotic resistance genes. In total, 206 blood culture bottles were included in the study. The FilmArray could identify microorganisms in 153/167 (91.6%) samples with monomicrobial growth. Thirteen of the 167 (7.8%) microorganisms were not covered by the FilmArray BCID panel. In 6/167 (3.6%) samples, the FilmArray detected an additional microorganism compared to blood culture. When polymicrobial growth was analyzed, the FilmArray could detect all target microorganisms in 17/24 (71%) samples. Twelve blood culture bottles that yielded a positive signal but showed no growth were also negative by FilmArray. In 3/206 (1.5%) bottles, the FilmArray results were invalid. The results of the FilmArray were reproducible, as demonstrated by the testing and retesting of five bottles in the same day and a longitudinal follow-up of five other blood cultures up to 4 weeks. The present study shows that the FilmArray is a rapid identification method with high performance in direct identification of bacteria and yeasts from positive blood culture bottles.


Diagnostic Microbiology and Infectious Disease | 2012

Clinical comparison of the Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN blood culture vials for the detection of candidemia

Eva-Lena Ericson; Lena Klingspor; Måns Ullberg; Volkan Özenci

The present study analyzed the performance of Bactec Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN vials in detection and time to detection (TTD) of Candida spp. in 179 simultaneous blood cultures. The Mycosis IC/F, BacT/Alert FA, and BacT/Alert FN vials could detect Candida spp. in 144 (80.45%) of 179, 149 (83.24%) of 179, and 8 (4.47%) of 179 samples, respectively. With the presence of antifungal therapy, the numbers of positive vials were higher in BacT/Alert FA compared to Mycosis IC/F, 87/99 versus 73/99, respectively (P < 0.05). TTD (SD) for C. albicans was shorter in Mycosis IC/F than in BacT/Alert FA vials without antifungal therapy, 20.89 (9.33) versus 28.26 (9.77), respectively (P < 0.01). The detection of Candida spp., with concomitant bacteremia, was higher in Mycosis IC/F than in BacT/Alert FA vials, 28/30 and 19/30, respectively (P = 0.01). The present data show that the use of Bactec Mycosis IC/F together with BacT/Alert FA vials might improve the detection of Candida spp.


Journal of Medical Microbiology | 2015

Rapid identification of bacteria from positive blood culture bottles by MALDI-TOF MS following short-term incubation on solid media.

Osman Altun; Silvia Botero-Kleiven; Sarah Carlsson; Måns Ullberg; Volkan Özenci

Rapid identification of bacteria from blood cultures enables early initiation of appropriate antibiotic treatment in patients with bloodstream infections (BSI). The objective of the present study was to evaluate the use of matrix-associated laser desorption ionization-time of flight (MALDI-TOF) MS after a short incubation on solid media for rapid identification of bacteria from positive blood culture bottles. MALDI-TOF MS was performed after 2.5 and 5.5 h plate incubation of samples from positive blood cultures. Identification scores with values ≥ 1.7 were accepted as successful identification if the results were confirmed by conventional methods. Conventional methods included MALDI-TOF MS, Vitek 2, and diverse biochemical and agglutination tests after overnight culture. In total, 515 positive blood cultures with monomicrobial bacterial growth representing one blood culture per patient were included in the study. There were 229/515 (44.5%) and 286/515 (55.5%) blood culture bottles with Gram-negative bacteria (GNB) and Gram-positive bacteria (GPB), respectively. MALDI-TOF MS following short-term culture could accurately identify 300/515 (58.3%) isolates at 2.5 h, GNB being identified in greater proportion (180/229; 78.6%) than GPB (120/286; 42.0%). In an additional 124/515 bottles (24.1%), identification was successful at 5.5 h, leading to accurate identification of bacteria from 424/515 (82.3%) blood cultures after short-term culture. Interestingly, 11/24 of the isolated anaerobic bacteria could be identified after 5.5 h. The present study demonstrates, in a large number of clinical samples, that MALDI-TOF MS following short-term culture on solid medium is a reliable and rapid method for identification of bacteria from blood culture bottles with monomicrobial bacterial growth.


PLOS ONE | 2014

A Multicentre Hospital Outbreak in Sweden Caused by Introduction of a vanB2 Transposon into a Stably Maintained pRUM-Plasmid in an Enterococcus faecium ST192 Clone

Audun Sivertsen; Hanna Billström; Öjar Melefors; Barbro Olsson Liljequist; Karin Tegmark Wisell; Måns Ullberg; Volkan Özenci; Arnfinn Sundsfjord; Kristin Hegstad

The clonal dissemination of VanB-type vancomycin-resistant Enterococcus faecium (VREfm) strains in three Swedish hospitals between 2007 and 2011 prompted further analysis to reveal the possible origin and molecular characteristics of the outbreak strain. A representative subset of VREfm isolates (n = 18) and vancomycin-susceptible E. faecium (VSEfm, n = 2) reflecting the spread in time and location was approached by an array of methods including: selective whole genome sequencing (WGS; n = 3), multi locus sequence typing (MLST), antimicrobial susceptibility testing, virulence gene profiling, identification of mobile genetic elements conferring glycopeptide resistance and their ability to support glycopeptide resistance transfer. In addition, a single VREfm strain with an unrelated PFGE pattern collected prior to the outbreak was examined by WGS. MLST revealed a predominance of ST192, belonging to a hospital adapted high-risk lineage harbouring several known virulence determinants (n≥10). The VREfm outbreak strain was resistant to ampicillin, gentamicin, ciprofloxacin and vancomycin, and susceptible to teicoplanin. Consistently, a vanB2-subtype as part of Tn1549/Tn5382 with a unique genetic signature was identified in the VREfm outbreak strains. Moreover, Southern blot hybridisation analyses of PFGE separated S1 nuclease-restricted total DNAs and filter mating experiments showed that vanB2-Tn1549/Tn5382 was located in a 70-kb sized rep 17/pRUM plasmid readily transferable between E. faecium. This plasmid contained an axe-txe toxin-antitoxin module associated with stable maintenance. The two clonally related VSEfm harboured a 40 kb rep 17/pRUM plasmid absent of the 30 kb vanB2-Tn1549/Tn5382 gene complex. Otherwise, these two isolates were similar to the VREfm outbreak strain in virulence- and resistance profile. In conclusion, our observations support that the origin of the multicentre outbreak was caused by an introduction of vanB2-Tn1549/Tn5382 into a rep 17/pRUM plasmid harboured in a pre-existing high-risk E. faecium ST192 clone. The subsequent dissemination of VREfm to other centres was primarily caused by clonal spread rather than plasmid transfer to pre-existing high-risk clones.


Journal of Clinical Microbiology | 2014

Identification of Microorganisms by FilmArray and Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Prior to Positivity in the Blood Culture System

Mohammed Almuhayawi; Osman Altun; Kristoffer Strålin; Volkan Özenci

ABSTRACT In this study, we investigated the performance of the FilmArray and matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) in identifying microorganisms from blood culture (BC) bottles prior to positivity. First, we used simulated BacT/Alert FA Plus BC bottles with five each for Escherichia coli and Staphylococcus aureus isolates. The FilmArray identified all 10 isolates before BC positivity with 9/10 at 5 h and 1 at 7.5 h after incubation in the BC system. MALDI-TOF MS failed to identify the isolates prior to positivity. When the bottles were incubated for 2.5 h at room temperature (RT) before we put them into the BC system, the FilmArray identified 6/10 at 2.5 h and the remaining 4 at 5 h. Finally, we tested simulated BC bottles after incubation at RT. Interestingly, 9/10 isolates were identified with the FilmArray after 8 h of incubation at RT. Second, we studied clinical BC bottles in quadruplicate. When three-fourths of the parallel bottles signaled positive, the FilmArray was run on the fourth nonsignaled bottle and was found to be positive in 14/15 such cases. Third, we analyzed the performance of the FilmArray in the identification of microorganisms from clinical BC bottles before incubation in the system. Two milliliters of broth from 400 BC bottles was collected after arrival at the laboratory and stored at −70°C. Sixteen bottles later signaled positive in the system. When the frozen broth from these bottles was analyzed, the FilmArray identified all the microorganisms in 8/16 bottles prior to incubation in the BC system. This study shows that the FilmArray can identify microorganisms from BC bottles prior to positivity and in some cases even prior to incubation in the BC system.


Journal of Clinical Microbiology | 2016

Controlled Evaluation of the New BacT/Alert Virtuo Blood Culture System for Detection and Time to Detection of Bacteria and Yeasts

Osman Altun; Mohammed Almuhayawi; Petra Lüthje; Rubina Taha; Måns Ullberg; Volkan Özenci

ABSTRACT We compared the newly approved BacT/Alert Virtuo blood culture system to the BacT/Alert 3D system using 115 clinical bacterial and fungal isolates in 784 simulated blood culture bottles. The time to detection was reduced by roughly 20% in the Virtuo system (P < 0.0001) while the detection rate did not differ.


PLOS ONE | 2015

The Performance of the Four Anaerobic Blood Culture Bottles BacT/ALERT-FN, -FN Plus, BACTEC-Plus and -Lytic in Detection of Anaerobic Bacteria and Identification by Direct MALDI-TOF MS

Mohammed Almuhayawi; Osman Altun; Adam Dilshad Abdulmajeed; Måns Ullberg; Volkan Özenci

Detection and identification of anaerobic bacteria in blood cultures (BC) is a well-recognized challenge in clinical microbiology. We studied 100 clinical anaerobic BC isolates to evaluate the performance of BacT/ALERT-FN, -FN Plus (BioMérieux), BACTEC-Plus and -Lytic (Becton Dickinson BioSciences) BC bottles in detection and time to detection (TTD) of anaerobic bacteria. BACTEC Lytic had higher detection rate (94/100, 94%) than BacT/ALERT FN Plus (80/100, 80%) (p<0.01) in the studied material. There was no significant difference in detection of anaerobic bacteria among the remaining bottle types. The 67 anaerobic bacteria that signalled positive in all four bottle types were analyzed to compare the time to detection (TTD) and isolates were directly identified by MALDI-TOF MS. There was a significant difference in TTD among the four bottle types (p<0.0001). The shortest median TTD was 18 h in BACTEC Lytic followed by BacT/ALERT FN (23.5 h), BACTEC Plus (27 h) and finally BacT/ALERT FN Plus (38 h) bottles. In contrast, MALDI-TOF MS performed similarly in all bottle types with accurate identification in 51/67 (76%) BacT/ALERT FN, 51/67 (76%) BacT/ALERT FN Plus, 53/67 (79%) BACTEC Plus and 50/67 (75%) BACTEC Lytic bottles. In conclusion, BACTEC Lytic bottles have significantly better detection rates and shorter TTD compared to the three other bottle types. The anaerobic BC bottles are equally suitable for direct MALDI-TOF MS for rapid and reliable identification of common anaerobic bacteria. Further clinical studies are warranted to investigate the performance of anaerobic BC bottles in detection of anaerobic bacteria and identification by direct MALDI-TOF MS.


Diagnostic Microbiology and Infectious Disease | 2013

Comparison of MALDI-TOF MS and VITEK 2 system for laboratory diagnosis of Granulicatella and Abiotrophia species causing invasive infections

Paul Ratcliffe; Hong Fang; Ellinor Thidholm; Stina Boräng; Katarina Westling; Volkan Özenci

Granulicatella and Abiotrophia spp. were known as nutritionally variant streptococci (NVS). Such strains have caused major diagnostic difficulties due to fastidious culturing and unspecific colony morphology. The present study is aimed at comparing the performance of laboratory available diagnostic methods for NVS isolates and determining the antimicrobial susceptibility of these isolates. Fourteen clinical invasive isolates, consisting of 10 Granulicatella adiacens, 1 Granulicatella elegans, and 3 Abiotrophia defectiva were in parallel analyzed by 2 matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems, i.e., Bruker MS and Vitek MS, as well as Vitek 2 for the species determination. 16S rRNA gene sequencing was applied as a reference method. The Vitek MS gave correct identification for all 14 isolates. The Bruker MS could correctly identify 8/10 G. adiacens, 0/1 G. elegans, and 3/3 A. defectiva isolates at the first analysis occasion, and all 14 isolates became identifiable after repeated tests. The Vitek 2 system could identify 6/10 G. adiacens, 1/1 G. elegans, and 2/3 A. defectiva isolates at the species level. Antimicrobial susceptibilities of 11 antibiotics were determined by Etest. Resistance against ciprofloxacin, ceftriaxone, rifampicin, and tetracycline were observed in 4, 10, 4, and 1 isolates, respectively. In conclusion, MALDI-TOF MS is a useful tool for the rapid diagnosis of NVS. Phenotypic testing by Vitek 2 is only partially effective for the accurate identification of such strains. The emergence of resistant NVS isolates indicates the necessity of monitoring antimicrobial susceptibilities of such uncommon pathogens.


Critical Care | 2014

Renal effects of treatment with a TLR4 inhibitor in conscious septic sheep

Johan Fenhammar; M. Rundgren; Kjell Hultenby; Jakob Forestier; Micael Taavo; Ellinor Kenne; Eddie Weitzberg; Stefan Eriksson; Volkan Özenci; Annika Wernerson; Robert Frithiof

IntroductionAcute kidney injury (AKI) is a common and feared complication of sepsis. The pathogenesis of sepsis-induced AKI is largely unknown, and therapeutic interventions are mainly supportive. In the present study, we tested the hypothesis that pharmacological inhibition of Toll-like receptor 4 (TLR4) would improve renal function and reduce renal damage in experimental sepsis, even after AKI had already developed.MethodsSheep were surgically instrumented and subjected to a 36-hour intravenous infusion of live Escherichia coli. After 12 hours, they were randomized to treatment with a selective TLR4 inhibitor (TAK-242) or vehicle.ResultsThe E. coli caused normotensive sepsis characterized by fever, increased cardiac index, hyperlactemia, oliguria, and decreased creatinine clearance. TAK-242 significantly improved creatinine clearance and urine output. The increase in N-acetyl-beta-D-glucosaminidas, a marker of tubular damage, was attenuated. Furthermore, TAK-242 reduced the renal neutrophil accumulation and glomerular endothelial swelling caused by sepsis. These effects were independent of changes in renal artery blood flow and renal microvascular perfusion in both cortex and medulla. TAK-242 had no effect per se on the measured parameters.ConclusionsThese results show that treatment with a TLR4 inhibitor is able to reverse a manifest impairment in renal function caused by sepsis. In addition, the results provide evidence that the mechanism underlying the effect of TAK-242 on renal function does not involve improved macro-circulation or micro-circulation, enhanced renal oxygen delivery, or attenuation of tubular necrosis. TLR4-mediated inflammation resulting in glomerular endothelial swelling may be an important part of the pathogenesis underlying Gram-negative septic acute kidney injury.


Journal of Clinical Microbiology | 2015

Rapid Identification of Microorganisms from Sterile Body Fluids by Use of FilmArray

Osman Altun; Mohammed Almuhayawi; Måns Ullberg; Volkan Özenci

ABSTRACT We evaluated the clinical performance of the FilmArray blood culture identification (BCID) panel in the identification of microorganisms from positive blood culture bottles inoculated with sterile body fluids. All organisms included in the FA BCID panel were accurately identified in 84/84 (100%) and 18/24 (75%) samples with mono- and polymicrobial growth, respectively.

Collaboration


Dive into the Volkan Özenci's collaboration.

Top Co-Authors

Avatar

Måns Ullberg

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Osman Altun

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Mohammed Almuhayawi

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Kristoffer Strålin

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Peter Bergman

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Petra Lüthje

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Salah Zangenah

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Stina Boräng

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar

Ellinor Thidholm

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge