Volker Busskamp
Friedrich Miescher Institute for Biomedical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volker Busskamp.
Science | 2010
Volker Busskamp; Jens Duebel; D. Balya; Mathias Fradot; Tim James Viney; Sandra Siegert; Anna C. Groner; Erik Cabuy; Valérie Forster; Mathias W. Seeliger; Martin Biel; Peter Humphries; Michel Paques; Saddek Mohand-Said; Didier Trono; Karl Deisseroth; José-Alain Sahel; Serge Picaud; Botond Roska
Let There Be Light Retinitis pigmentosa, a disease that can result from a wide variety of genetic defects, causes degeneration of photoreceptor cells in the retina and leads to blindness. In the course of the disease, it is generally the rod photoreceptor cells that degenerate first. Cone photoreceptor cells may persist, but in a damaged and nonfunctional state. Busskamp et al. (p. 413, published online 24 June; see the cover; see the Perspective by Cepko) have now applied a gene therapy approach to mouse models of retinitis pigmentosa. Inducing expression of a bacterial light-activated ion pump, halorho dopsin, in the damaged cone cells improved visual responses in the diseased mouse retinas. Thus, it may be possible to rescue cone photoreceptors therapeutically, even after they have already been damaged. A bacterial ion pump rescues visual function in damaged cone-photoreceptor cells in mouse models of retinitis pigmentosa. Retinitis pigmentosa refers to a diverse group of hereditary diseases that lead to incurable blindness, affecting two million people worldwide. As a common pathology, rod photoreceptors die early, whereas light-insensitive, morphologically altered cone photoreceptors persist longer. It is unknown if these cones are accessible for therapeutic intervention. Here, we show that expression of archaebacterial halorhodopsin in light-insensitive cones can substitute for the native phototransduction cascade and restore light sensitivity in mouse models of retinitis pigmentosa. Resensitized photoreceptors activate all retinal cone pathways, drive sophisticated retinal circuit functions (including directional selectivity), activate cortical circuits, and mediate visually guided behaviors. Using human ex vivo retinas, we show that halorhodopsin can reactivate light-insensitive human photoreceptors. Finally, we identified blind patients with persisting, light-insensitive cones for potential halorhodopsin-based therapy.
Cell | 2010
Jacek Krol; Volker Busskamp; Ilona Markiewicz; Michael B. Stadler; Sebastian Ribi; Jens Richter; Jens Duebel; Silvia Bicker; Hans Jörg Fehling; Dirk Schübeler; Thomas G. Oertner; Gerhard Schratt; Miriam Bibel; Botond Roska; Witold Filipowicz
Adaptation to different levels of illumination is central to the function of the retina. Here, we demonstrate that levels of the miR-183/96/182 cluster, miR-204, and miR-211 are regulated by different light levels in the mouse retina. Concentrations of these microRNAs were downregulated during dark adaptation and upregulated in light-adapted retinas, with rapid decay and increased transcription being responsible for the respective changes. We identified the voltage-dependent glutamate transporter Slc1a1 as one of the miR-183/96/182 targets in photoreceptor cells. We found that microRNAs in retinal neurons decay much faster than microRNAs in nonneuronal cells. The high turnover is also characteristic of microRNAs in hippocampal and cortical neurons, and neurons differentiated from ES cells in vitro. Blocking activity reduced turnover of microRNAs in neuronal cells while stimulation with glutamate accelerated it. Our results demonstrate that microRNA metabolism in neurons is higher than in most other cells types and linked to neuronal activity.
Gene Therapy | 2012
Volker Busskamp; Serge Picaud; José-Alain Sahel; Botond Roska
Retinitis pigmentosa (RP) refers to a diverse group of progressive, hereditary diseases of the retina that lead to incurable blindness and affect two million people worldwide. Artificial photoreceptors constructed by gene delivery of light-activated channels or pumps (‘optogenetic tools’) to surviving cell types in the remaining retinal circuit has been shown to restore photosensitivity in animal models of RP at the level of the retina and cortex as well as behaviorally. The translational potential of this optogenetic approach has been evaluated using in vitro studies involving post-mortem human retinas. Here, we review recent developments in this expanding field and discuss the potential and limitations of optogenetic engineering for the treatment of RP.
Neuron | 2008
Johan Jakobsson; Maria I. Cordero; Reto Bisaz; Anna C. Groner; Volker Busskamp; Jean-Charles Bensadoun; Florence Cammas; Régine Losson; Isabelle M. Mansuy; Carmen Sandi; Didier Trono
KAP1 is an essential cofactor of KRAB-zinc finger proteins, a family of vertebrate-specific epigenetic repressors of largely unknown functions encoded in the hundreds by the mouse and human genomes. Here, we report that KAP1 is expressed at high levels and necessary for KRAB-mediated repression in mature neurons of the mouse brain. Mice deleted for KAP1 in the adult forebrain exhibit heightened levels of anxiety-like and exploratory activity and stress-induced alterations in spatial learning and memory. In the hippocampus, a small number of genes are dysregulated, including some imprinted genes. Chromatin analyses of the promoters of two genes markedly upregulated in knockout mice reveal decreased histone 3 K9-trimethylation and increased histone 3 and histone 4 acetylation. We propose a model in which the tethering of KAP1-associated chromatin remodeling factors via KRAB-ZFPs epigenetically controls gene expression in the hippocampus, thereby conditioning responses to behavioral stress.
Nature Methods | 2009
Zsolt Boldogk odblac; Kamill Balint; Gautam B Awatramani; D. Balya; Volker Busskamp; Tim James Viney; Pamela Sarita Lagali; Jens Duebel; Emese Pásti; Dóra Tombácz; Judit S Tóth; Irma F Takács; Brigitte Gross Scherf; Botond Roska
We developed retrograde, transsynaptic pseudorabies viruses (PRVs) with genetically encoded activity sensors that optically report the activity of connected neurons among spatially intermingled neurons in the brain. Next we engineered PRVs to express two differentially colored fluorescent proteins in a time-shifted manner to define a time period early after infection to investigate neural activity. Finally we used multiple-colored PRVs to differentiate and dissect the complex architecture of brain regions.
Embo Molecular Medicine | 2014
Therese Cronin; Luk H. Vandenberghe; Péter Hantz; Josephine Jüttner; Andreas Reimann; Ágota Kacsó; Rachel M. Huckfeldt; Volker Busskamp; Pamela Sarita Lagali; Botond Roska; Jean Bennett
In this report, we describe the development of a modified adeno‐associated virus (AAV) capsid and promoter for transduction of retinal ON‐bipolar cells. The bipolar cells, which are post‐synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON‐bipolar cells light‐sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON‐bipolar cells. This evokes high‐frequency (~100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use.
Neuron | 2014
Volker Busskamp; Jacek Krol; Dasha Nelidova; Janine M Daum; Tamas Szikra; Ben Tsuda; Josephine Jüttner; Karl Farrow; Brigitte Gross Scherf; Claudia Patricia Patino Alvarez; Christel Genoud; Vithiyanjali Sothilingam; Naoyuki Tanimoto; Michael B. Stadler; Mathias W. Seeliger; Markus Stoffel; Witold Filipowicz; Botond Roska
The outer segments of cones serve as light detectors for daylight color vision, and their dysfunction leads to human blindness conditions. We show that the cone-specific disruption of DGCR8 in adult mice led to the loss of miRNAs and the loss of outer segments, resulting in photoreceptors with significantly reduced light responses. However, the number of cones remained unchanged. The loss of the outer segments occurred gradually over 1 month, and during this time the genetic signature of cones decreased. Reexpression of the sensory-cell-specific miR-182 and miR-183 prevented outer segment loss. These miRNAs were also necessary and sufficient for the formation of inner segments, connecting cilia and short outer segments, as well as light responses in stem-cell-derived retinal cultures. Our results show that miR-182- and miR-183-regulated pathways are necessary for cone outer segment maintenance in vivo and functional outer segment formation in vitro.
Molecular Systems Biology | 2014
Volker Busskamp; Nathan E. Lewis; Patrick Guye; Alex H.M. Ng; Seth L. Shipman; Susan M. Byrne; Neville E. Sanjana; Jernej Murn; Yinqing Li; Shangzhong Li; Michael B Stadler; Ron Weiss; George M. Church
Advances in cellular reprogramming and stem cell differentiation now enable ex vivo studies of human neuronal differentiation. However, it remains challenging to elucidate the underlying regulatory programs because differentiation protocols are laborious and often result in low neuron yields. Here, we overexpressed two Neurogenin transcription factors in human‐induced pluripotent stem cells and obtained neurons with bipolar morphology in 4 days, at greater than 90% purity. The high purity enabled mRNA and microRNA expression profiling during neurogenesis, thus revealing the genetic programs involved in the rapid transition from stem cell to neuron. The resulting cells exhibited transcriptional, morphological and functional signatures of differentiated neurons, with greatest transcriptional similarity to prenatal human brain samples. Our analysis revealed a network of key transcription factors and microRNAs that promoted loss of pluripotency and rapid neurogenesis via progenitor states. Perturbations of key transcription factors affected homogeneity and phenotypic properties of the resulting neurons, suggesting that a systems‐level view of the molecular biology of differentiation may guide subsequent manipulation of human stem cells to rapidly obtain diverse neuronal types.
Human Gene Therapy | 2011
Mathias Fradot; Volker Busskamp; Valérie Forster; Therese Cronin; Thierry Léveillard; Jean Bennett; José-Alain Sahel; Botond Roska; Serge Picaud
Gene therapy studies in primates can provide important information regarding vector tropism, specific cellular expression, biodistribution, and safety prior to clinical trials. In this study, we report the assessment of transduction efficiency of recombinant adeno-associated virus (rAAV) vectors using human postmortem retina. Transductions were performed using two in vitro models prepared from human tissue: dissociated cell cultures and retinal explants. These models were used to assess cellular tropism and selectivity of rAAV vectors encoding for fluorescent proteins under the control of different promoters. These promoters were a ubiquitous cytomegalovirus promoter and a cell type-specific promoter targeting expression in ON bipolar cells. The results demonstrate that this in vitro approach can limit the use of living primates for the validation of gene therapy in vision and ophthalmology.
Biospektrum | 2011
Volker Busskamp
ZusammenfassungDie gezielte Expression einer mikrobiellen licht-sensitiven Chloridpumpe in verbliebenen Zellen führt zur funktionellen Reaktivierung der vormals blinden Netzhäuten in der degenerativen Erkrankung Retinitis Pigmentosa und verspricht somit Heilung.AbstractThe targeted expression of a microbial light-sensitive chloride pump to remaining cells in degenerative retinas led to a functional reactivation of this former blind retinas. This opens a new treatment for the disease retinitis pigmentosa.