Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker C. Cordes is active.

Publication


Featured researches published by Volker C. Cordes.


Science | 2013

Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging.

Anna Szymborska; Alex de Marco; Nathalie Daigle; Volker C. Cordes; John A. G. Briggs; Jan Ellenberg

Poring Over the Nuclear Pore The nuclear pore is a macromolecular complex that traverses the paired membranes of the nuclear envelope through which a variety of nuclear protein and RNA cargoes must traffic. Szymborska et al. (p. 655, published online 11 July) combined super-resolution microscopy with single-particle averaging to localize the proteins that make up the structural scaffold of the nuclear pore complex with a precision well below one nanometer. These molecular positional constraints clarified contradictory models for the structure of the nuclear pore and demonstrate that the structural organization of protein complexes can be studied by light microscopy in situ in whole cells. The localization of individual components of the nuclear pore complex was dissected using information from thousands of pores. Much of life’s essential molecular machinery consists of large protein assemblies that currently pose challenges for structure determination. A prominent example is the nuclear pore complex (NPC), for which the organization of its individual components remains unknown. By combining stochastic super-resolution microscopy, to directly resolve the ringlike structure of the NPC, with single particle averaging, to use information from thousands of pores, we determined the average positions of fluorescent molecular labels in the NPC with a precision well below 1 nanometer. Applying this approach systematically to the largest building block of the NPC, the Nup107-160 subcomplex, we assessed the structure of the NPC scaffold. Thus, light microscopy can be used to study the molecular organization of large protein complexes in situ in whole cells.


Journal of Cell Biology | 2002

The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import

Tobias C. Walther; Helen Pickersgill; Volker C. Cordes; Martin W. Goldberg; Terry D. Allen; Iain W. Mattaj; Maarten Fornerod

The nuclear pore complex (NPC) mediates bidirectional macromolecular traffic between the nucleus and cytoplasm in eukaryotic cells. Eight filaments project from the NPC into the cytoplasm and are proposed to function in nuclear import. We investigated the localization and function of two nucleoporins on the cytoplasmic face of the NPC, CAN/Nup214 and RanBP2/Nup358. Consistent with previous data, RanBP2 was localized at the cytoplasmic filaments. In contrast, CAN was localized near the cytoplasmic coaxial ring. Unexpectedly, extensive blocking of RanBP2 with gold-conjugated antibodies failed to inhibit nuclear import. Therefore, RanBP2-deficient NPCs were generated by in vitro nuclear assembly in RanBP2-depleted Xenopus egg extracts. NPCs were formed that lacked cytoplasmic filaments, but that retained CAN. These nuclei efficiently imported nuclear localization sequence (NLS) or M9 substrates. NPCs lacking CAN retained RanBP2 and cytoplasmic filaments, and showed a minor NLS import defect. NPCs deficient in both CAN and RanBP2 displayed no cytoplasmic filaments and had a strikingly immature cytoplasmic appearance. However, they showed only a slight reduction in NLS-mediated import, no change in M9-mediated import, and were normal in growth and DNA replication. We conclude that RanBP2 is the major nucleoporin component of the cytoplasmic filaments of the NPC, and that these filaments do not have an essential role in importin α/β– or transportin-dependent import.


Biophysical Journal | 2013

Coaligned dual-channel STED nanoscopy and molecular diffusion analysis at 20 nm resolution.

Fabian Göttfert; Christian A. Wurm; Veronika Mueller; Sebastian Berning; Volker C. Cordes; Alf Honigmann; Stefan W. Hell

We report on a fiber laser-based stimulated emission-depletion microscope providing down to ∼20 nm resolution in raw data images as well as 15-19 nm diameter probing areas in fluorescence correlation spectroscopy. Stimulated emission depletion pulses of nanosecond duration and 775 nm wavelength are used to silence two fluorophores simultaneously, ensuring offset-free colocalization analysis. The versatility of this superresolution method is exemplified by revealing the octameric arrangement of Xenopus nuclear pore complexes and by quantifying the diffusion of labeled lipid molecules in artificial and living cell membranes.


Journal of Cell Biology | 2006

NDC1: a crucial membrane-integral nucleoporin of metazoan nuclear pore complexes.

Fabrizia Stavru; Bastian B. Hülsmann; Anne Spang; Enno Hartmann; Volker C. Cordes; Dirk Görlich

POM121 and gp210 were, until this point, the only known membrane-integral nucleoporins (Nups) of vertebrates and, thus, the only candidate anchors for nuclear pore complexes (NPCs) within the nuclear membrane. In an accompanying study (see Stavru et al. on p. 477 of this issue), we provided evidence that NPCs can exist independently of POM121 and gp210, and we predicted that vertebrate NPCs contain additional membrane-integral constituents. We identify such an additional membrane protein in the NPCs of mammals, frogs, insects, and nematodes as the orthologue to yeast Ndc1p/Cut11p. Human NDC1 (hNDC1) likely possesses six transmembrane segments, and it is located at the nuclear pore wall. Depletion of hNDC1 from human HeLa cells interferes with the assembly of phenylalanine-glycine repeat Nups into NPCs. The loss of NDC1 function in Caenorhabditis elegans also causes severe NPC defects and very high larval and embryonic mortality. However, it is not ultimately lethal. Instead, homozygous NDC1-deficient worms can be propagated. This indicates that none of the membrane-integral Nups is universally essential for NPC assembly, and suggests that NPC biogenesis is an extremely fault-tolerant process.


Nature Cell Biology | 2006

A selective block of nuclear actin export stabilizes the giant nuclei of Xenopus oocytes.

Markus T. Bohnsack; Theis Stüven; Christa Kuhn; Volker C. Cordes; Dirk Görlich

Actin is a major cytoskeletal element and is normally kept cytoplasmic by exportin 6 (Exp6)-driven nuclear export. Here, we show that Exp6 recognizes actin features that are conserved from yeast to human. Surprisingly however, microinjected actin was not exported from Xenopus laevis oocyte nuclei, unless Exp6 was co-injected, indicating that the pathway is inactive in this cell type. Indeed, Exp6 is undetectable in oocytes, but is synthesized from meiotic maturation onwards, which explains how actin export resumes later in embryogenesis. Exp6 thus represents the first example of a strictly developmentally regulated nuclear transport pathway. We asked why Xenopus oocytes lack Exp6 and observed that ectopic application of Exp6 renders the giant oocyte nuclei extremely fragile. This effect correlates with the selective disappearance of a sponge-like intranuclear scaffold of F-actin. These nuclei have a normal G2-phase DNA content in a volume 100,000 times larger than nuclei of somatic cells. Apparently, their mechanical integrity cannot be maintained by chromatin and the associated nuclear matrix, but instead requires an intranuclear actin-scaffold.


Cell Death & Differentiation | 2001

Caspases mediate nucleoporin cleavage, but not early redistribution of nuclear transport factors and modulation of nuclear permeability in apoptosis.

E. Ferrando-May; Volker C. Cordes; I. Biller-Ckovric; J. Mirkovic; Dirk Görlich; P. Nicotera

In eukaryotic cells, both soluble transport factors and components of the nuclear pore complex mediate protein and RNA trafficking between the nucleus and the cytoplasm. Here, we investigated whether caspases, the major execution system in apoptosis, target the nuclear pore or components of the nuclear transport machinery. Four nucleoporins, Nup153, RanBP2, Nup214 and Tpr are cleaved by caspases during apoptosis. In contrast, the nuclear transport factors, Ran, importin α and importin β are not proteolytically processed, but redistribute across the nuclear envelope independently and prior to caspase activation. Also, mRNA accumulates into the nucleus before caspases become active. Microinjection experiments further revealed that early in apoptosis, the nucleus becomes permeable to dextran molecules of 70 kD molecular weight. Redistribution of import factors and mRNA, as well as nuclear permeabilisation, occur prior to caspase-mediated nucleoporin cleavage. Our findings suggest that the apoptotic programme includes modifications in the machinery responsible for nucleocytoplasmic transport, which are independent from caspase-mediated degradation of nuclear proteins.


The EMBO Journal | 2010

Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion

Sandra Krull; Julia Dörries; Bjorn M. M. Boysen; Sonja Reidenbach; Lars O. Magnius; Helene Norder; Johan Thyberg; Volker C. Cordes

Amassments of heterochromatin in somatic cells occur in close contact with the nuclear envelope (NE) but are gapped by channel‐ and cone‐like zones that appear largely free of heterochromatin and associated with the nuclear pore complexes (NPCs). To identify proteins involved in forming such heterochromatin exclusion zones (HEZs), we used a cell culture model in which chromatin condensation induced by poliovirus (PV) infection revealed HEZs resembling those in normal tissue cells. HEZ occurrence depended on the NPC‐associated protein Tpr and its large coiled coil‐forming domain. RNAi‐mediated loss of Tpr allowed condensing chromatin to occur all along the NEs nuclear surface, resulting in HEZs no longer being established and NPCs covered by heterochromatin. These results assign a central function to Tpr as a determinant of perinuclear organization, with a direct role in forming a morphologically distinct nuclear sub‐compartment and delimiting heterochromatin distribution.


Journal of Cell Biology | 2006

Nuclear pore complex assembly and maintenance in POM121- and gp210-deficient cells

Fabrizia Stavru; Gitte Nautrup-Pedersen; Volker C. Cordes; Dirk Görlich

So far, POM121 and gp210 are the only known anchoring sites of vertebrate nuclear pore complexes (NPCs) within the lipid bilayer of the nuclear envelope (NE) and, thus, are excellent candidates for initiating the NPC assembly process. Indeed, we demonstrate that POM121 can recruit several nucleoporins, such as Nup62 or Nup358, to ectopic assembly sites. It thus appears to act as a nucleation site for the assembly of NPC substructures. Nonetheless, we observed functional NPCs and intact NEs in severely POM121-depleted cells. Double knockdowns of gp210 and POM121 in HeLa cells, as well as depletion of POM121 from human fibroblasts, which do not express gp210, further suggest that NPCs can assemble or at least persist in a POM121- and gp210-free form. This points to extensive redundancies in protein–protein interactions within NPCs and suggests that vertebrate NPCs contain additional membrane-integral nucleoporins for anchorage within the lipid bilayer of the NE. In Stavru et al. (on p. 509 of this issue), we describe such an additional transmembrane nucleoporin as the metazoan orthologue of yeast Ndc1p.


Journal of Biological Chemistry | 2006

Caspases target only two architectural components within the core structure of the nuclear pore complex.

Monika Patre; Anja Tabbert; Daniela Hermann; Henning Walczak; Hans-Richard Rackwitz; Volker C. Cordes; Elisa Ferrando-May

Caspases were recently implicated in the functional impairment of the nuclear pore complex during apoptosis, affecting its dual activity as nucleocytoplasmic transport channel and permeability barrier. Concurrently, electron microscopic data indicated that nuclear pore morphology is not overtly altered in apoptotic cells, raising the question of how caspases may deactivate nuclear pore function while leaving its overall structure largely intact. To clarify this issue we have analyzed the fate of all known nuclear pore proteins during apoptotic cell death. Our results show that only two of more than 20 nuclear pore core structure components, namely Nup93 and Nup96, are caspase targets. Both proteins are cleaved near their N terminus, disrupting the domains required for interaction with other nucleoporins actively involved in transport and providing the permeability barrier but dispensable for maintaining the nuclear pore scaffold. Caspase-mediated proteolysis of only few nuclear pore complex components may exemplify a general strategy of apoptotic cells to efficiently disable huge macromolecular machines.


Molecular Biology of the Cell | 2004

Nucleoporins as components of the nuclear pore complex core structure and Tpr as the architectural element of the nuclear basket.

Sandra Krull; Johan Thyberg; Birgitta Björkroth; Hans-Richard Rackwitz; Volker C. Cordes

Collaboration


Dive into the Volker C. Cordes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans-Richard Rackwitz

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge