Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Eckstein is active.

Publication


Featured researches published by Volker Eckstein.


PLOS ONE | 2008

Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process

Wolfgang Wagner; Patrick Horn; Mirco Castoldi; Anke Diehlmann; Simone Bork; Rainer Saffrich; Vladimir Benes; Jonathon Blake; Stefan M. Pfister; Volker Eckstein; Anthony D. Ho

Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. These cells are usually culture expanded prior to their application. However, a precise molecular definition of MSC and the sequel of long-term in vitro culture are yet unknown. In this study, we have addressed the impact of replicative senescence on human MSC preparations. Within 43 to 77 days of cultivation (7 to 12 passages), MSC demonstrated morphological abnormalities, enlargement, attenuated expression of specific surface markers, and ultimately proliferation arrest. Adipogenic differentiation potential decreased whereas the propensity for osteogenic differentiation increased. mRNA expression profiling revealed a consistent pattern of alterations in the global gene expression signature of MSC at different passages. These changes are not restricted to later passages, but are continuously acquired with increasing passages. Genes involved in cell cycle, DNA replication and DNA repair are significantly down-regulated in late passages. Genes from chromosome 4q21 were over-represented among differentially regulated transcripts. Differential expression of 10 genes has been verified in independent donor samples as well as in MSC that were isolated under different culture conditions. Furthermore, miRNA expression profiling revealed an up-regulation of hsa-mir-371, hsa-mir-369-5P, hsa-mir-29c, hsa-mir-499 and hsa-let-7f upon in vitro propagation. Our studies indicate that replicative senescence of MSC preparations is a continuous process starting from the first passage onwards. This process includes far reaching alterations in phenotype, differentiation potential, global gene expression patterns, and miRNA profiles that need to be considered for therapeutic application of MSC preparations.


PLOS ONE | 2009

Aging and Replicative Senescence Have Related Effects on Human Stem and Progenitor Cells

Wolfgang Wagner; Simone Bork; Patrick Horn; Damir Krunic; Thomas Walenda; Anke Diehlmann; Vladimir Benes; Jonathon Blake; Franz Xaver Huber; Volker Eckstein; Petra Boukamp; Anthony D. Ho

The regenerative potential diminishes with age and this has been ascribed to functional impairments of adult stem cells. Cells in culture undergo senescence after a certain number of cell divisions whereby the cells enlarge and finally stop proliferation. This observation of replicative senescence has been extrapolated to somatic stem cells in vivo and might reflect the aging process of the whole organism. In this study we have analyzed the effect of aging on gene expression profiles of human mesenchymal stromal cells (MSC) and human hematopoietic progenitor cells (HPC). MSC were isolated from bone marrow of donors between 21 and 92 years old. 67 genes were age-induced and 60 were age-repressed. HPC were isolated from cord blood or from mobilized peripheral blood of donors between 27 and 73 years and 432 genes were age-induced and 495 were age-repressed. The overlap of age-associated differential gene expression in HPC and MSC was moderate. However, it was striking that several age-related gene expression changes in both MSC and HPC were also differentially expressed upon replicative senescence of MSC in vitro. Especially genes involved in genomic integrity and regulation of transcription were age-repressed. Although telomerase activity and telomere length varied in HPC particularly from older donors, an age-dependent decline was not significant arguing against telomere exhaustion as being causal for the aging phenotype. These studies have demonstrated that aging causes gene expression changes in human MSC and HPC that vary between the two different cell types. Changes upon aging of MSC and HPC are related to those of replicative senescence of MSC in vitro and this indicates that our stem and progenitor cells undergo a similar process also in vivo.


Clinical Cancer Research | 2010

Differentiation therapy exerts antitumor effects on stem-like glioma cells.

Benito Campos; Feng Wan; Mohammad Farhadi; Aurélie Ernst; Felix Zeppernick; Katrin E. Tagscherer; Rezvan Ahmadi; Jennifer Lohr; Christine Dictus; Georg Gdynia; Stephanie E. Combs; Violaine Goidts; Burkhard Helmke; Volker Eckstein; Wilfried Roth; Peter Lichter; Andreas Unterberg; Bernhard Radlwimmer; Christel Herold-Mende

Purpose: Stem-like tumor cells comprise a highly tumorigenic and therapy-resistant tumor subpopulation, which is believed to substantially influence tumor initiation and therapy resistance in glioma. Currently, therapeutic, drug-induced differentiation is considered as a promising approach to eradicate this tumor-driving cell population; retinoic acid is well known as a potent modulator of differentiation and proliferation in normal stem cells. In glioma, knowledge about the efficacy of retinoic acid–induced differentiation to target the stem-like tumor cell pool could have therapeutic implications. Experimental Design: Stem-like glioma cells (SLGC) were differentiated with all-trans retinoic acid–containing medium to study the effect of differentiation on angiogenesis, invasive growth, as well as radioresistance and chemoresistance of SLGCs. In vivo effects were studied using live microscopy in a cranial window model. Results: Our data suggest that in vitro differentiation of SLGCs induces therapy-sensitizing effects, impairs the secretion of angiogenic cytokines, and disrupts SLGCs motility. Further, ex vivo differentiation reduces tumorigenicity of SLGCs. Finally, we show that all-trans retinoic acid treatment alone can induce antitumor effects in vivo. Conclusions: Altogether, these results highlight the potential of differentiation treatment to target the stem-like cell population in glioblastoma. Clin Cancer Res; 16(10); 2715–28. ©2010 AACR.


Stem Cells | 2007

Molecular and secretory profiles of human mesenchymal stromal cells and their abilities to maintain primitive hematopoietic progenitors.

Wolfgang Wagner; Christoph Roderburg; Frederik Wein; Anke Diehlmann; Maria Frankhauser; Ralf Schubert; Volker Eckstein; Anthony D. Ho

Mesenchymal stromal cells (MSC) provide a supportive cellular microenvironment and are able to maintain the self‐renewal capacity of hematopoietic progenitor cells (HPC). Isolation procedures for MSC vary extensively, and this may influence their biologic properties. In this study, we have compared human MSC isolated from bone marrow (BM) using two culture conditions, from cord blood (CB), and from adipose tissue (AT). The ability to maintain long‐term culture‐initiating cell frequency and a primitive CD34+CD38− immunophenotype was significantly higher for MSC derived from BM and CB compared with those from AT. These results were in line with a significantly higher adhesion of HPC to MSC from BM and CB versus MSC from AT. We have compared the cytokine production of MSC by cytokine antibody arrays, enzyme‐linked immunosorbent assay, and a cytometric bead array. There were reproducible differences in the chemokine secretion profiles of various MSC preparations, but there was no clear concordance with differences in their potential to maintain primitive function of HPC. Global gene expression profiles of MSC preparations were analyzed and showed that adhesion proteins including cadherin‐11, N‐cadherin, vascular cell adhesion molecule 1, neural cell adhesion molecule 1, and integrins were highly expressed in MSC preparations derived from BM and CB. Thus, MSC from BM and CB are superior to MSC from AT for maintenance of primitive HPC. The latter property is associated with specific molecular profiles indicating the significance of cell‐cell junctions but not with secretory profiles.


Journal of Cellular Physiology | 2009

Calcification or dedifferentiation: Requirement to lock mesenchymal stem cells in a desired differentiation stage†

Andrea Dickhut; Karoliina Pelttari; Patricia Janicki; Wolfgang Wagner; Volker Eckstein; Marcus Egermann; Wiltrud Richter

A current challenge in mesenchymal stem cell (MSC)‐based cartilage repair is to solve donor and tissue‐dependent variability of MSC cultures and to prevent chondrogenic cells from terminal differentiation like in the growth plate. The aim of this study was to select the best source for MSC which could promise stable cartilage formation in the absence of hypertrophy and ectopic in vivo mineralization. We hypothesized that MSC from synovium are superior to bone marrow‐ and adipose tissue‐derived MSC since they are derived from a joint tissue. MSC were characterized by flow cytometry. MSC pellets were cultured under chondrogenic conditions and differentiation was evaluated by histology, gene expression analysis, and determination of alkaline phosphatase activity (ALP). After chondrogenic induction, pellets were transplanted subcutaneously into SCID mice. MSC from bone marrow, adipose tissue, and synovium revealed similar COL2A1/COL10A1 mRNA levels after chondrogenic induction and were positive for collagen‐type‐X. Bone marrow‐derived and adipose tissue‐derived MSC showed significantly higher ALP activity than MSC from synovium. Low ALP‐activity before transplantation of pellets correlated with marginal calcification of explants. Surprisingly, non‐mineralizing transplants specifically lost their collagen‐type II, but not collagen‐type I deposition in vivo, or were fully degraded. In conclusion, the lower donor‐dependent ALP activation and reduced mineralization of synovium‐derived heterotopic transplants did not lead to stable ectopic cartilage as known from articular chondrocytes, but correlated with fibrous dedifferentation or complete degeneration of MSC pellets. This emphasizes that beside appropriate induction of differentiation, locking of MSC in the desired differentiation state is a major challenge for MSC‐based repair strategies. J. Cell. Physiol. 219: 219–226, 2009.


Arthritis & Rheumatism | 2008

Reduced CD4+,CD25− T cell sensitivity to the suppressive function of CD4+,CD25high,CD127−/low regulatory T cells in patients with active systemic lupus erythematosus

Ram Kumar Venigalla; Theresa Tretter; Stefan Krienke; Regina Max; Volker Eckstein; Norbert Blank; Christoph Fiehn; Anthony D. Ho; Hanns-Martin Lorenz

OBJECTIVE CD4+,CD25high regulatory T (Treg) cells play a crucial role in the maintenance of self tolerance and prevention of organ-specific autoimmunity. The presence of many in vivo-preactivated CD4+,CD25++ T cells in patients with systemic lupus erythematosus (SLE) poses a difficulty in discriminating CD25++ activated T cells from CD25high Treg cells. To overcome this problem, we analyzed the phenotype and function of CD4+,CD25high,CD127(-/low) natural Treg (nTreg) cells isolated from the peripheral blood of patients with SLE. METHODS CD4+,CD25high,CD127(-/low) nTreg cells and CD4+,CD25- responder T (Tresp) cells from patients with SLE and normal donors were separated by fluorescence-activated cell sorting. Cell proliferation was quantified by 3H-thymidine incorporation, and immunophenotyping of the cells was done using FACScan. RESULTS Comparable percentages of CD4+,CD25high,FoxP3+ T cells were observed in patients with SLE and normal donors. Proliferation of SLE nTreg cells sorted into the subset CD4+,CD25high,CD127(-/low) was significantly decreased compared with that of SLE nTreg cells sorted into the subset CD4+,CD25high (mean +/- SEM 2,223 +/- 351 counts per minute versus 9,104 +/- 1,720 cpm, respectively), while in normal donors, these values were 802 +/- 177 cpm and 2,028 +/- 548 cpm, respectively, confirming that effector cell contamination was reduced. Notably, the suppressive activity of nTreg cells was intact in all groups. However, CD4+,CD25- Tresp cells isolated from patients with active SLE were significantly less sensitive than those from patients with inactive SLE to the suppressive function of autologous or normal donor CD4+,CD25high,CD127(-/low) nTreg cells. Furthermore, a significant inverse correlation was observed between the extent of T cell regulation in suppressor assays and the level of lupus disease activity. CONCLUSION This study is the first to show that, in human SLE, impaired sensitivity of Tresp cells to the suppressive effects of a comparably functional, highly purified nTreg cell population leads to a defective suppression of T cell proliferation in active SLE. Studies aiming to define the mechanisms leading to Tresp cell resistance might help in the development of highly specific, alternative immunotherapeutic tools for the control of systemic autoimmune diseases such as SLE.


Blood | 2011

Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging

Michael T. Bocker; Isabelle Hellwig; Achim Breiling; Volker Eckstein; Anthony D. Ho; Frank Lyko

DNA methylation plays an important role in the self-renewal of hematopoietic stem cells and in the commitment to the lymphoid or myeloid lineages. Using purified CD34⁺ hematopoietic progenitor cells and differentiated myeloid cell populations from the same human samples, we obtained detailed methylation profiles at distinct stages of hematopoiesis. We identified a defined set of differentiation-related genes that are methylated in CD34⁺ hematopoietic progenitor cells but show pronounced DNA hypomethylation in monocytes and in granulocytes. In addition, by comparing hematopoietic progenitor cells from umbilical cord blood to hematopoietic progenitor cells from peripheral blood of adult donors we were also able to analyze age-related methylation changes in CD34⁺ cells. Interestingly, the methylation changes observed in older progenitor cells showed a bimodal pattern with hypomethylation of differentiation-associated genes and de novo methylation events resembling epigenetic mutations. Our results thus provide detailed insight into the methylation dynamics during differentiation and suggest that epigenetic changes contribute to hematopoietic progenitor cell aging.


Clinical Cancer Research | 2011

Effector T-Cell Infiltration Positively Impacts Survival of Glioblastoma Patients and Is Impaired by Tumor-Derived TGF-β

Jennifer Lohr; Thomas Ratliff; Andrea Huppertz; Yingzi Ge; Christine Dictus; Rezvan Ahmadi; Stefan Grau; Nobuyoshi Hiraoka; Volker Eckstein; Rupert C. Ecker; Thomas Korff; Andreas von Deimling; Andreas Unterberg; Christel Herold-Mende

Purpose: In glioma—in contrast to various other cancers—the impact of T-lymphocytes on clinical outcome is not clear. We investigated the clinical relevance and regulation of T-cell infiltration in glioma. Experimental Design: T-cell subpopulations from entire sections of 93 WHO°II–IV gliomas were computationally identified using markers CD3, CD8, and Foxp3; survival analysis was then done on primary glioblastomas (pGBM). Endothelial cells expressing cellular adhesion molecules (CAM) were similarly computationally quantified from the same glioma tissues. Influence of prominent cytokines (as measured by ELISA from 53 WHO°II–IV glioma lysates) on CAM-expression in GBM-isolated endothelial cells was determined using flow cytometry. The functional relevance of the cytokine-mediated CAM regulation was tested in a transmigration assay using GBM-derived endothelial cells and autologous T-cells. Results: Infiltration of all T-cell subsets increased in high-grade tumors. Most strikingly, within pGBM, elevated numbers of intratumoral effector T cells (Teff, cytotoxic and helper) significantly correlated with a better survival; regulatory T cells were infrequently present and not associated with GBM patient outcome. Interestingly, increased infiltration of Teff cells was related to the expression of ICAM-1 on the vessel surface. Transmigration of autologous T cells in vitro was markedly reduced in the presence of CAM-blocking antibodies. We found that TGF-β molecules impeded transmigration and downregulated CAM-expression on GBM-isolated endothelial cells; blocking TGF-β receptor signaling increased transmigration. Conclusions: This study provides comprehensive and novel insights into occurrence and regulation of T-cell infiltration in glioma. Specifically, targeting TGF-β1 and TGF-β2 might improve intratumoral T-cell infiltration and thus enhance effectiveness of immunotherapeutic approaches. Clin Cancer Res; 17(13); 4296–308. ©2011 AACR.


Journal of Cellular and Molecular Medicine | 2010

Co-culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells

Thomas Walenda; Simone Bork; Patrick Horn; Frederik Wein; Rainer Saffrich; Anke Diehlmann; Volker Eckstein; Anthony D. Ho; Wolfgang Wagner

Mesenchymal stromal cells (MSC) have been suggested to provide a suitable cellular environment for in vitro expansion of haematopoietic stem and progenitor cells (HPC) from umbilical cord blood. In this study, we have simultaneously analysed the cell division history and immunophenotypic differentiation of HPC by using cell division tracking with carboxyfluorescein diacetate N‐succinimidyl ester (CFSE). Co‐culture with MSC greatly enhanced proliferation of human HPC, especially of the more primitive CD34+CD38− fraction. Without co‐culture CD34 and CD133 expressions decreased after several cell divisions, whereas CD38 expression was up‐regulated after some cell divisions and then diminished in fast proliferating cells. Co‐culture with MSC maintained a primitive immunophenotype (CD34+, CD133+ and CD38−) for more population doublings, whereas up‐regulation of differentiation markers (CD13, CD45 and CD56) in HPC was delayed to higher numbers of cell divisions. Especially MSC of early cell passages maintained CD34 expression in HPC over more cell divisions, whereas MSC of higher passages further enhanced their proliferation rate. Inhibition of mitogen‐activated protein kinase 1 (MAPK1) impaired proliferation and differentiation of HPC, but not maintenance of long‐term culture initiating cells. siRNA knockdown of N‐cadherin and VCAM1 in feeder layer cells increased the fraction of slow dividing HPC, whereas knockdown of integrin beta 1 (ITGB1) and CD44 impaired their differentiation. In conclusion, MSC support proliferation as well as self‐renewal of HPC with primitive immunophenotype. The use of early passages of MSC and genetic manipulation of proteins involved in HPC–MSC interaction might further enhance cord blood expansion on MSC.


Cytotherapy | 2009

A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: results of a European phase II study

Stefan Fruehauf; Marlon R. Veldwijk; Timon Seeger; Mario Schubert; Stephanie Laufs; Julian Topaly; Patrick Wuchter; Falk Dillmann; Volker Eckstein; Frederik Wenz; Hartmut Goldschmidt; Anthony D. Ho; Gary Calandra

BACKGROUND AIMS Previous studies in xenograft models have shown that human peripheral blood progenitor cells (PBPC) mobilized with the CXCR4 antagonist plerixafor (AMD3100) have a higher bone marrow (BM) reconstitution potential than granulocyte-colony-stimulating factor (G-CSF)-mobilized PBPC. METHODS PBPC obtained during G-CSF-supported mobilization before and after a supplementary administration of AMD3100 from patients with multiple myeloma and non-Hodgkins lymphoma (n=15; phase II study) were investigated for co-expression of primitive and lineage-associated markers, their proliferative activity in vitro and repopulation potential after clinical transplantation. RESULTS A significant increase in primitive CD34+ CD38(-) cells was observed in intraindividual comparisons of all patients after administration of G-CSF+AMD3100 (peripheral blood: median 8-fold, range 2,4-fold - 39-fold) compared with G-CSF alone. Using a long-term culture-initiating cell assay, this increase was confirmed. After transplantation of G-CSF+AMD3100-mobilized PBPC, the time to leukocyte reconstitution > 1 x 10(3)/microL and platelet reconstitution > 2 x 10(4)/microL was 14 (10-19 days) and 13 days (10-15 days), respectively. A complete and stable hematologic reconstitution (platelets > 1.5 x 10(5)/microL) was observed in 91% of all patients within 35 days. CONCLUSIONS An additional application of AMD3100 to a standard G-CSF mobilization regimen leads to a significant increase in primitive PBPC with high repopulation capacity.

Collaboration


Dive into the Volker Eckstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Wagner

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge