Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Gerke is active.

Publication


Featured researches published by Volker Gerke.


Nature Reviews Molecular Cell Biology | 2005

Annexins: linking Ca2+ signalling to membrane dynamics

Volker Gerke; Carl E. Creutz; Stephen E. Moss

Eukaryotic cells contain various Ca2+-effector proteins that mediate cellular responses to changes in intracellular Ca2+ levels. A unique class of these proteins — annexins — can bind to certain membrane phospholipids in a Ca2+-dependent manner, providing a link between Ca2+ signalling and membrane functions. By forming networks on the membrane surface, annexins can function as organizers of membrane domains and membrane-recruitment platforms for proteins with which they interact. These and related properties enable annexins to participate in several otherwise unrelated events that range from membrane dynamics to cell differentiation and migration.


Cell | 2007

PTEN-Mediated Apical Segregation of Phosphoinositides Controls Epithelial Morphogenesis through Cdc42

Fernando Martin-Belmonte; Ama Gassama; Anirban Datta; Wei Yu; Ursula Rescher; Volker Gerke; Keith E. Mostov

Formation of the apical surface and lumen is a fundamental, yet poorly understood, step in epithelial organ development. We show that PTEN localizes to the apical plasma membrane during epithelial morphogenesis to mediate the enrichment of PtdIns(4,5)P2 at this domain during cyst development in three-dimensional culture. Ectopic PtdIns(4,5)P2 at the basolateral surface causes apical proteins to relocalize to the basolateral surface. Annexin 2 (Anx2) binds PtdIns(4,5)P2 and is recruited to the apical surface. Anx2 binds Cdc42, recruiting it to the apical surface. Cdc42 recruits aPKC to the apical surface. Loss of function of PTEN, Anx2, Cdc42, or aPKC prevents normal development of the apical surface and lumen. We conclude that the mechanism of PTEN, PtdIns(4,5)P2, Anx2, Cdc42, and aPKC controls apical plasma membrane and lumen formation.


Journal of Cell Science | 2004

Annexins - unique membrane binding proteins with diverse functions

Ursula Rescher; Volker Gerke

Annexins are a well-known multigene family of Ca2+-regulated phospholipid-binding and membrane-binding proteins. Recent work employing annexin-knockdown or - knockout models has provided new insights into the biological functions of different annexin proteins. Transient annexin depletion by RNA interference and the expression of dominant-negative mutant proteins has revealed roles for the proteins in membrane processes ranging from the control of membrane structure to certain membrane transport phenomena. Although such functions correlate well with the ability of annexins to interact with cellular membranes in a reversible and regulated manner, some activities are membrane independent, probably because annexins can also engage in specific protein-protein interactions. Among other things, this is evident in annexin A1- and A2-knockout mice, which show impaired regulation of neutrophil extravasation and defects in plasmin generation, respectively.


Molecular Cell | 2000

A Novel Ligand of the Formyl Peptide Receptor: Annexin I Regulates Neutrophil Extravasation by Interacting with the FPR

Antje Walther; Kristina Riehemann; Volker Gerke

The glucocorticoid-regulated protein annexin I (lipocortin I) has been shown to mediate antiinflammatory activities of glucocorticoids, but the molecular basis of its action has remained elusive. Here we show that annexin I acts through the formyl peptide receptor (FPR) on human neutrophils. Peptides derived from the unique N-terminal domain of annexin I serve as FPR ligands and trigger different signaling pathways in a dose-dependent manner. Lower peptide concentrations possibly found in inflammatory situations elicit Ca2+ transients without fully activating the MAP kinase pathway. This causes a specific inhibition of the transendothelial migration of neutrophils and a desensitization of neutrophils toward a chemoattractant challenge. These findings identify annexin I peptides as novel, endogenous FPR ligands and establish a mechanistic basis of annexin I-mediated antiinflammatory effects.


The EMBO Journal | 2003

Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex

Stan F. J. van de Graaf; Joost G. J. Hoenderop; Dimitra Gkika; Dennis Lamers; Jean Prenen; Ursula Rescher; Volker Gerke; Olivier Staub; Bernd Nilius; René J. M. Bindels

TRPV5 and TRPV6 constitute the Ca2+ influx pathway in a variety of epithelial cells. Here, we identified S100A10 as the first auxiliary protein of these epithelial Ca2+ channels using yeast two‐hybrid and GST pull‐down assays. This S100 protein forms a heterotetrameric complex with annexin 2 and associates specifically with the conserved sequence VATTV located in the C‐terminal tail of TRPV5 and TRPV6. Of these five amino acids, the first threonine plays a crucial role since the corresponding mutants (TRPV5 T599A and TRPV6 T600A) exhibited a diminished capacity to bind S100A10, were redistributed to a subplasma membrane area and did not display channel activity. Using GST pull‐down and co‐immunoprecipitation assays we demonstrated that annexin 2 is part of the TRPV5–S100A10 complex. Furthermore, the S100A10–annexin 2 pair colocalizes with the Ca2+ channels in TRPV5‐expressing renal tubules and TRPV6‐expressing duodenal cells. Importantly, downregulation of annexin 2 using annexin 2‐specific small interfering RNA inhibited TRPV5 and TRPV6‐mediated currents in transfected HEK293 cells. In conclusion, the S100A10–annexin 2 complex plays a crucial role in routing of TRPV5 and TRPV6 to plasma membrane.


Molecular Cell | 2009

Mislocalized activation of oncogenic RTKs switches downstream signaling outcomes.

Chunaram Choudhary; J. Olsen; Christian Brandts; Jürgen Cox; Pavankumar N.G. Reddy; Frank-D. Böhmer; Volker Gerke; Dirk-E. Schmidt-Arras; Wolfgang E. Berdel; Carsten Müller-Tidow; Matthias Mann; Hubert Serve

Inappropriate activation of oncogenic kinases at intracellular locations is frequently observed in human cancers, but its effects on global signaling are incompletely understood. Here, we show that the oncogenic mutant of Flt3 (Flt3-ITD), when localized at the endoplasmic reticulum (ER), aberrantly activates STAT5 and upregulates its targets, Pim-1/2, but fails to activate PI3K and MAPK signaling. Conversely, membrane targeting of Flt3-ITD strongly activates the MAPK and PI3K pathways, with diminished phosphorylation of STAT5. Global phosphoproteomics quantified 12,186 phosphorylation sites, confirmed compartment-dependent activation of these pathways and discovered many additional components of Flt3-ITD signaling. The differential activation of Akt and Pim kinases by ER-retained Flt3-ITD helped to identify their putative targets. Surprisingly, we find spatial regulation of tyrosine phosphorylation patterns of the receptor itself. Thus, intracellular activation of RTKs by oncogenic mutations in the biosynthetic route may exploit cellular architecture to initiate aberrant signaling cascades, thus evading negative regulation.


The EMBO Journal | 1985

The regulatory chain in the p36-kd substrate complex of viral tyrosine-specific protein kinases is related in sequence to the S-100 protein of glial cells.

Volker Gerke; K. Weber

The major cytoplasmic target of various tyrosine‐specific protein kinases is a 36‐kd protein (p36). This protein can exist as a monomer or as a complex with a small subunit which seems to have a regulatory function. Amino acid sequence analysis of the small subunit from porcine intestine documents a unique polypeptide of 95 residues with a calculated mol. wt. close to 11 kd (p11). Since an immunologically related subunit of the same electrophoretic mobility is also found in the corresponding complex of chicken intestine p11 is well conserved across species. Unexpectedly, the sequence of p11 shows a high homology with the glia‐specific protein S‐100 whose biological function is not known. Although both proteins are dimers of rather small polypeptides we have not been able to detect in our preparations of p11 the moderate Ca2+ binding known for S‐100. Certain implications of this sequence relation are discussed.


Traffic | 2004

Annexin–Actin Interactions

Matthew J. Hayes; Ursula Rescher; Volker Gerke; Stephen E. Moss

The actin cytoskeleton is a malleable framework of polymerised actin monomers that may be rapidly restructured to enable diverse cellular activities such as motility, endocytosis and cytokinesis. The regulation of actin dynamics involves the coordinated activity of numerous proteins, among which members of the annexin family of Ca2+‐ and phospholipid‐binding proteins play an important role. Although the roles of annexins in actin dynamics are not understood at a mechanistic level, annexins have the requisite properties to integrate Ca2+‐signaling with actin dynamics at membrane contact sites. In this review we discuss the current state of knowledge on this topic, and consider how and where annexins may fit into the complex molecular machinery that regulates the actin cytoskeleton.


Cancer Research | 2004

S100 Family Members and Trypsinogens Are Predictors of Distant Metastasis and Survival in Early-Stage Non-Small Cell Lung Cancer

Sven Diederichs; Etmar Bulk; Björn Steffen; Ping Ji; Lara Tickenbrock; Kerstin Lang; Kurt S. Zänker; Ralf Metzger; Paul M. Schneider; Volker Gerke; Michael Thomas; Wolfgang E. Berdel; Hubert Serve; Carsten Müller-Tidow

Distant metastasis is the predominant cause of death in early-stage non-small cell lung cancer (NSCLC). Currently, it is impossible to predict the occurrence of metastasis at early stages and thereby separate patients who could be cured by surgical resection alone from patients who would benefit from additional chemotherapy. In this study, we applied a comparative microarray approach to identify gene expression differences between early-stage NSCLC patients whose cancer ultimately did or did not metastasize during the course of their disease. Transcriptional profiling of 82 microarrays from two patient groups revealed differential expression of several gene families including known predictors of metastasis (e.g., matrix metalloproteinases). In addition, we found S100P, S100A2, trypsinogen C (TRY6), and trypsinogen IVb (PRSS3) to be overexpressed in tumors that metastasized during the course of the disease. In a third group of 42 patients, we confirmed the induction of S100 proteins and trypsinogens in metastasizing tumors and its significant correlation with survival by real-time quantitative reverse transcription-PCR. Overexpression of S100A2, S100P, or PRSS3 in NSCLC cell cultures led to increased transendothelial migration, corroborating the role of S100A2, S100P, and PRSS3 in the metastatic process. Taken together, we provide evidence that expression of S100 proteins and trypsinogens is associated with metastasis and predicts survival in early stages of NSCLC. For the first time, this implicates a role of S100 proteins and trypsinogens in the metastatic process of early-stage NSCLC.


Journal of Biological Chemistry | 2006

Requirement for Annexin A1 in Plasma Membrane Repair

Anna K. McNeil; Ursula Rescher; Volker Gerke; Paul L. McNeil

Ca2+ entering a cell through a torn or disrupted plasma membrane rapidly triggers a combination of homotypic and exocytotic membrane fusion events. These events serve to erect a reparative membrane patch and then anneal it to the defect site. Annexin A1 is a cytosolic protein that, when activated by micromolar Ca2+, binds to membrane phospholipids, promoting membrane aggregation and fusion. We demonstrate here that an annexin A1 function-blocking antibody, a small peptide competitor, and a dominant-negative annexin A1 mutant protein incapable of Ca2+ binding all inhibit resealing. Moreover, we show that, coincident with a resealing event, annexin A1 becomes concentrated at disruption sites. We propose that Ca2+ entering through a disruption locally induces annexin A1 binding to membranes, initiating emergency fusion events whenever and wherever required.

Collaboration


Dive into the Volker Gerke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Grill

University of Münster

View shared research outputs
Top Co-Authors

Avatar

Anke Strey

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge