Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Patzel is active.

Publication


Featured researches published by Volker Patzel.


RNA | 2013

A universal TaqMan-based RT-PCR protocol for cost-efficient detection of small noncoding RNA

Ulrike Jung; Xiaoou Jiang; Stefan H. E. Kaufmann; Volker Patzel

Several methods for the detection of RNA have been developed over time. For small RNA detection, a stem-loop reverse primer-based protocol relying on TaqMan RT-PCR has been described. This protocol requires an individual specific TaqMan probe for each target RNA and, hence, is highly cost-intensive for experiments with small sample sizes or large numbers of different samples. We describe a universal TaqMan-based probe protocol which can be used to detect any target sequence and demonstrate its applicability for the detection of endogenous as well as artificial eukaryotic and bacterial small RNAs. While the specific and the universal probe-based protocol showed the same sensitivity, the absolute sensitivity of detection was found to be more than 100-fold lower for both than previously reported. In subsequent experiments, we found previously unknown limitations intrinsic to the method affecting its feasibility in determination of mature template RISC incorporation as well as in multiplexing. Both protocols were equally specific in discriminating between correct and incorrect small RNA targets or between mature miRNA and its unprocessed RNA precursor, indicating the stem-loop RT-primer, but not the TaqMan probe, triggers target specificity. The presented universal TaqMan-based RT-PCR protocol represents a cost-efficient method for the detection of small RNAs.


Molecular therapy. Nucleic acids | 2017

Expression of Herpes Simplex Virus Thymidine Kinase/Ganciclovir by RNA Trans-Splicing Induces Selective Killing of HIV-Producing Cells

Carin Kristina Ingemarsdotter; Sushmita Poddar; Sarah Kate Mercier; Volker Patzel; Andrew Michael Lever

Antiviral strategies targeting hijacked cellular processes are less easily evaded by the virus than viral targets. If selective for viral functions, they can have a high therapeutic index. We used RNA trans-splicing to deliver the herpes simplex virus thymidine kinase-ganciclovir (HSV-tk/GCV) cell suicide system into HIV-producing cells. Using an extensive in silico bioinformatics and RNA structural analysis approach, ten HIV RNA trans-splicing constructs were designed targeting eight different HIV splice donor or acceptor sites and were tested in cells expressing HIV. Trans-spliced mRNAs were identified in HIV-expressing cells using qRT-PCR with successful detection of fusion RNA transcripts between HIV RNA and the HSV-tk RNA transcripts from six of ten candidate RNA trans-splicing constructs. Conventional PCR and Sanger sequencing confirmed RNA trans-splicing junctions. Measuring cell viability in the presence or absence of GCV expression of HSV-tk by RNA trans-splicing led to selective killing of HIV-producing cells using either 3′ exon replacement or 5′ exon replacement in the presence of GCV. Five constructs targeting four HIV splice donor and acceptor sites, D4, A5, A7, and A8, involved in regulating the generation of multiple HIV RNA transcripts proved to be effective for trans-splicing mediated selective killing of HIV-infected cells, within which individual constructs targeting D4 and A8 were the most efficient.


Molecular Therapy | 2016

Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression

Xiaoou Jiang; Han Yu; Cui Rong Teo; Genim Siu Xian Tan; Sok Chin Goh; Parasvi S. Patel; Yiqiang Kevin Chua; Nasirah Banu Sahul Hameed; Antonio Bertoletti; Volker Patzel

Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.


RNA Biology | 2013

Homologous SV40 RNA trans-splicing: A new mechanism for diversification of viral sequences and phenotypes

Joachim Eul; Volker Patzel

Simian Virus 40 (SV40) is a polyomavirus found in both monkeys and humans, which causes cancer in some animal models. In humans, SV40 has been reported to be associated with cancers but causality has not been proven yet. The transforming activity of SV40 is mainly due to its 94-kD large T antigen, which binds to the retinoblastoma (pRb) and p53 tumor suppressor proteins, and thereby perturbs their functions. Here we describe a 100 kD super T antigen harboring a duplication of the pRB binding domain that was associated with unusual high cell transformation activity and that was generated by a novel mechanism involving homologous RNA trans-splicing of SV40 early transcripts in transformed rodent cells. Enhanced trans-splice activity was observed in clones carrying a single point mutation in the large T antigen 5′ donor splice site (ss). This mutation impaired cis-splicing in favor of an alternative trans-splice reaction via a cryptic 5′ss within a second cis-spliced SV40 pre-mRNA molecule and enabled detectable gene expression. Next to the cryptic 5′ss we identified additional trans-splice helper functions, including putative dimerization domains and a splice enhancer sequence. Our findings suggest RNA trans-splicing as a SV40-intrinsic mechanism that supports the diversification of viral RNA and phenotypes.


Nucleic Acids Research | 2015

Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression

Han Yu; Xiaoou Jiang; Kar Tong Tan; Liting Hang; Volker Patzel

Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.


ACS Applied Materials & Interfaces | 2017

Engineering and Design of Polymeric Shells: Inwards Interweaving Polymers as Multilayer Nanofilm, Immobilization Matrix, or Chromatography Resins

Houwen Matthew Pan; Han Yu; Gernot Guigas; Andreas Fery; Matthias Weiss; Volker Patzel; Dieter Trau

Hydrogels with complex internal structures are required for advanced drug delivery systems and tissue engineering or used as inks for 3D printing. However, hydrogels lack the tunability and diversity of polymeric shells and require complicated postsynthesis steps to alter its structure or properties. We report on the first integrated approach to assemble and design polymeric shells to take on various complex structures and functions such as multilayer nanofilms, multidensity immobilization matrix, or multiadhesive chromatography resins via the tuning of four assembly parameters: (a) poly(allylamine) (PA) concentration, (b) number of poly(allylamine)/poly(styrenesulfonic acid) (PA/PSSA) incubations, (c) poly(allylamine) (PA) to poly(ethylene glycol) (PEG) grafting ratio, and (d) % H2O present during assembly. Our approach combines the complex 3D structures of hydrogels with the versatility of self-assembled polymeric layers. Polymeric shells produced from our method have a highly uniform material distribution and well-defined shell boundaries. Shell thickness, density, and adhesive properties are easily tunable. By virtue of such unique material features, we demonstrate that polymeric shells can be designed to expand beyond its conventional function as thin films and serve as immobilization matrix, chromatography resins, or even reaction compartments. This technique could also uncover interesting perspectives in the development of novel multimaterials for 3D printing to synthesize scaffolds at a higher order of complexity.


Computational and structural biotechnology journal | 2014

Homologous SV40 RNA trans-splicing: Special case or prime example of viral RNA trans-splicing?

Sushmita Poddar; Joachim Eul; Volker Patzel

To date the Simian Virus 40 (SV40) is the only proven example of a virus that recruits the mechanism of RNA trans-splicing to diversify its sequences and gene products. Thereby, two identical viral transcripts are efficiently joined by homologous trans-splicing triggering the formation of a highly transforming 100 kDa super T antigen. Sequences of other viruses including HIV-1 and the human adenovirus type 5 were reported to be involved in heterologous trans-splicing towards cellular or viral sequences but the meaning of these events remains unclear. We computationally and experimentally investigated molecular features associated with viral RNA trans-splicing and identified a common pattern: Viral RNA trans-splicing occurs between strong cryptic or regular viral splice sites and strong regular or cryptic splice sites of the trans-splice partner sequences. The majority of these splice sites are supported by exonic splice enhancers. Splice sites that could compete with the trans-splicing sites for cis-splice reactions are weaker or inexistent. Finally, all but one of the trans-splice reactions seem to be facilitated by one or more complementary binding domains of 11 to 16 nucleotides in length which, however occur with a statistical probability close to one for the given length of the involved sequences. The chimeric RNAs generated via heterologous viral RNA trans-splicing either did not lead to fusion proteins or led to proteins of unknown function. Our data suggest that distinct viral RNAs are highly susceptible to trans-splicing and that heterologous viral trans-splicing, unlike homologous SV40 trans-splicing, represents a chance event.


Molecular therapy. Nucleic acids | 2018

RNA Structure Design Improves Activity and Specificity of trans-Splicing-Triggered Cell Death in a Suicide Gene Therapy Approach

Sushmita Poddar; Pei She Loh; Zi Hao Ooi; Farhana Osman; Joachim Eul; Volker Patzel

Spliceosome-mediated RNA trans-splicing enables correction or labeling of pre-mRNA, but therapeutic applications are hampered by issues related to the activity and target specificity of trans-splicing RNA (tsRNA). We employed computational RNA structure design to improve both on-target activity and specificity of tsRNA in a herpes simplex virus thymidine kinase/ganciclovir suicide gene therapy approach targeting alpha fetoprotein (AFP), a marker of hepatocellular carcinoma (HCC) or human papillomavirus type 16 (HPV-16) pre-mRNA. While unstructured, mismatched target binding domains significantly improved 3′ exon replacement (3’ER), 5′ exon replacement (5’ER) correlated with the thermodynamic stability of the tsRNA 3′ end. Alternative on-target trans-splicing was found to be a prevalent event. The specificity of trans-splicing with the intended target splice site was improved 10-fold by designing tsRNA that harbors secondary target binding domains shielding alternative on-target and blinding off-target splicing events. Such rationally designed suicide RNAs efficiently triggered death of HPV-16-transduced or hepatoblastoma-derived human tissue culture cells without evidence for off-target cell killing. Highest cell death activities were observed with novel dual-targeting tsRNAs programmed for trans-splicing toward AFP and a second HCC pre-mRNA biomarker. Our observations suggest trans-splicing represents a promising approach to suicide gene therapy.


ACS Applied Materials & Interfaces | 2018

Capsule-like Safe Genetic Vectors—Cell-Penetrating Core–Shell Particles Selectively Release Functional Small RNA and Entrap Its Encoding DNA

Han Yu; Houwen Matthew Pan; Evalin; Dieter Trau; Volker Patzel

The breakthrough of genetic therapy is set back by the lack of suitable genetic vector systems. We present the development of permeability-tunable, capsule-like, polymeric, micron-sized, core-shell particles for delivery of recombinant nucleic acids into target cells. These particles were demonstrated to effectively release rod-shaped small hairpin RNA and to selectively retain the RNA-encoding DNA template, which was designed to form a bulky tripartite structure. Thus, they can serve as delivery vectors preloaded with cargo RNA or alternatively as RNA-producing micro-bioreactors. The internalization of particles by human tissue culture cells inversely correlated with particle size and with the cell to particle ratio, although at a higher than stoichiometric excess of particles over cells, cell viability was impaired. Among primary human peripheral blood mononuclear cells, up to 50% of the monocytes displayed positive uptake of particles. Finally, these particles efficiently delivered siRNA into HEK293T cells triggering functional knockdown of the target gene lamin A/C. Particle-mediated knockdown was superior to that observed after conventional siRNA delivery via lipofection. Core-shell particles protect encapsulated nucleic acids from degradation and target cell genomes from direct contact with recombinant DNA, thus representing a promising delivery vector system that can be explored for genetic therapy and vaccination.


SOJ Microbiology & Infectious Diseases | 2013

Viral RNA Trans-Splicing: Chance Event or Product of Evolution?

Volker Patzel

Collaboration


Dive into the Volker Patzel's collaboration.

Top Co-Authors

Avatar

Xiaoou Jiang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Han Yu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Sushmita Poddar

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Joachim Eul

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Dieter Trau

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Houwen Matthew Pan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Antonio Bertoletti

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Cui Rong Teo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Evalin

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Farhana Osman

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge