Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Speth is active.

Publication


Featured researches published by Volker Speth.


The Plant Cell | 2002

Nucleocytoplasmic Partitioning of the Plant Photoreceptors Phytochrome A, B, C, D, and E Is Regulated Differentially by Light and Exhibits a Diurnal Rhythm

Stefan Kircher; Patricia Gil; László Kozma-Bognár; Erzsébet Fejes; Volker Speth; Tania Husselstein-Muller; Diana Bauer; Éva Ádám; Eberhard Schäfer; Ferenc Nagy

The phytochrome family of plant photoreceptors has a central role in the adaptation of plant development to changes in ambient light conditions. The individual phytochrome species regulate different or partly overlapping physiological responses. We generated transgenic Arabidopsis plants expressing phytochrome A to E:green fluorescent protein (GFP) fusion proteins to assess the biological role of intracellular compartmentation of these photoreceptors in light-regulated signaling. We show that all phytochrome:GFP fusion proteins were imported into the nuclei. Translocation of these photoreceptors into the nuclei was regulated differentially by light. Light-induced accumulation of phytochrome species in the nuclei resulted in the formation of speckles. The appearance of these nuclear structures exhibited distinctly different kinetics, wavelengths, and fluence dependence and was regulated by a diurnal rhythm. Furthermore, we demonstrate that the import of mutant phytochrome B:GFP and phytochrome A:GFP fusion proteins, shown to be defective in signaling in vivo, is regulated by light but is not accompanied by the formation of speckles. These results suggest that (1) the differential regulation of the translocation of phytochrome A to E into nuclei plays a role in the specification of functions, and (2) the appearance of speckles is a functional feature of phytochrome-regulated signaling.


Planta | 1997

Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes.

G. Müsel; T. Schindler; R. Bergfeld; Katia Ruel; G. Jacquet; Catherine Lapierre; Volker Speth; Peter Schopfer

Lignin is an integral constituent of the primary cell walls of the dark-grown maize (Zea mays L.) coleoptile, a juvenile organ that is still in the developmental state of rapid cell extension. Coleoptile lignin was characterized by (i) conversion to lignothiolglycolate derivative, (ii) isolation of polymeric fragments after alkaline hydrolysis, (iii) reactivity to antibodies against dehydrogenative polymers prepared from monolignols, and (iv) identification of thioacidolysis products typical of lignins. Substantial amounts of lignin could be solubilized from the coleoptile cell walls by mild alkali treatments. Thioacidolysis analyses of cell walls from coleoptiles and various mesocotyl tissues demonstrated the presence of guaiacyl-, syringyl- and (traces of)p-hydroxyphenyl units besidesp-coumaric and ferulic acids. There are tissue-specific differences in amount and composition of lignins from different parts of the maize seedling. Electron-microscopic immunogold labeling of epitopes recognized by a specific anti-guaiacyl/syringyl antibody demonstrated the presence of lignin in all cell walls of the 4-d-old coleoptile. The primary walls of parenchyma and epidermis were more weakly labeled than the secondary wall thickenings of tracheary elements. No label was found in middle lamellae and cell corners. Lignin epitopes appeared first in the tracheary elements on day 2 and in the parenchyma on day 3 after sowing. Incubation of coleoptile segments in H2O2 increased the amount of extractable lignin and the abundance of lignin epitopes in the parenchyma cell walls. Lignin deposition was temporally and spatially correlated with the appearance of epitopes for prolinerich proteins, but not for hydroxyproline-rich proteins, in the cell walls. The lignin content of coleoptiles was increased by irradiating the seedlings with white or farred light, correlated with the inhibition of elongation growth, while growth promotion by auxin had no effect. It is concluded that wall stiffness, and thus extension growth, of the coleoptile can be controlled by lignification of the primary cell walls. Primary-wall lignin may represent part of an extended polysaccharide-polyphenol network that limits the extensibility of the cell walls.


Plant Physiology | 2003

Plasma Membrane H + -ATPase Is Involved in Auxin-Mediated Cell Elongation during Wheat Embryo Development

Nicole Rober-Kleber; Jolana T. P. Albrechtová; Sonja Fleig; Norbert Huck; Wolfgang Michalke; Edgar Wagner; Volker Speth; Gunther Neuhaus; Christiane Fischer-Iglesias

Previous investigations suggested that specific auxin spatial distribution due to auxin movements to particular embryonic regions was important for normal embryonic pattern formation. To gain information on the molecular mechanism(s) by which auxin acts to direct pattern formation in specific embryonic regions, the role of a plasma membrane (PM) ATPase was evaluated as downstream target of auxin in the present study. Western-blot analysis revealed that the PM H+-ATPase expression level was significantly increased by auxin in wheat (Triticum aestivum) embryos (two–three times increase). In bilaterally symmetrical embryos, the spatial expression pattern of the PM H+-ATPase correlates with the distribution pattern of the auxin analog, tritiated 5-azidoindole-3-acetic acid. A strong immunosignal was observed in the abaxial epidermis of the scutellum and in the epidermal cells at the distal tip of this organ. Pseudoratiometric analysis using a fluorescent pH indicator showed that the pH in the apoplast of the cells expressing the PM H+-ATPase was in average more acidic than the apoplastic pH of nonexpressing cells. Cellulose staining of living embryos revealed that cells of the scutellum abaxial epidermis expressing the ATPase were longer than the scutellum adaxial epidermal cells, where the protein was not expressed. Our data indicate that auxin activates the proton pump resulting in apoplastic acidification, a process contributing to cell wall loosening and elongation of the scutellum. Therefore, we suggest that the PM H+-ATPase is a component of the auxin-signaling cascade that may direct pattern formation in embryos.


The Plant Cell | 1997

Induction of zygotic polyembryos in wheat: influence of auxin polar transport

Christiane Fischer; Volker Speth; Sonja Fleig-Eberenz; Gunther Neuhaus

The effects of two auxin polar transport inhibitors, N-1-naphthylphthalamic acid (NPA) and 3,3[prime],4[prime],5,7-pentahydroxyflavone (quercetin), on attaining bilateral symmetry from radial symmetry during early wheat embryogenesis were investigated by using an in vitro culture system. Although NPA and quercetin belong to two different classes of auxin transport inhibitors, the phytotropins and the flavonoids, respectively, they induced the same specific abnormal phenotypes during embryo development. These abnormal embryos differentiated multiple meristems (i.e., multiple shoot and root meristems) and multiple organs (i.e., multiple coleoptiles and scutella). Multiple shoot apical meristem phenotypes were characterized by partly multiplied embryonic axes and supernumerary scutella. The differentiation of multiple primary roots in addition to multiple shoot meristems and multiple scutella led to the formation of polyembryos. The occurrence of multiple shoot meristem phenotypes depended on the concentration of the inhibitor and the developmental stage of the isolated embryo. Embryos treated with NPA or quercetin developed multiple radicle phenotypes less frequently than they developed multiple shoot meristem phenotypes. Our observations suggest that the root meristem differentiates later than the shoot meristem. Our data support the hypothesis that polar transport of auxin has a determining influence on the differentiation of the embryonic axis and the scutellum.


Biochimica et Biophysica Acta | 1974

Differential effects of temperature on the nuclear and plasma membranes of lymphoid cells. A study by freeze-etch electron microscopy.

Frank Wunderlich; Donald F.H. Wallach; Volker Speth; Herbert Fischer

Abstract 1. 1. We have used freeze-fracture electron microscopy to examine the effects of cooling on the core ultrastructure of the plasma and nuclear membranes of normal thymocytes and lymph node cells, as well as concanavalin A-treated thymocytes and mouse lymphoma cells. 2. 2. Chilling below 22 °C produces smooth areas, free of intramembranous particles on both faces of both inner and outer nuclear membranes. This effect is reversible and can be prevented by glutaraldehyde fixation. 3. 3. Plasma membranes, in contrast to the nuclear membranes, exhibit no change in freeze-fracture morphology upon cooling. 4. 4. We hypothesize that the changes observed in the nuclear membranes represent thermotropic lipid phase transitions and that such transitions either do not occur in plasma membranes or are there constrained to very small regions.


Journal of Ultrastructure Research | 1972

Membranes in Tetrahymena: I. The cortical pattern

Frank Wunderlich; Volker Speth

The membrane pattern of the Tetrahymena cortex is investigated using thin-sectioning and freeze-etching electron microscopy. The plasma and alveolar membranes are different with respect to their thin-sectioning and freeze-etching appearance. Freeze-etching reveals new structural elements, i.e. specific arrangements of particles differently sized and differently disposed in the pellicular, ciliary, and mucocyst membranes. These membrane-associated particles apparently correlated to specific organelles are discussed with respect to their functions.


Planta | 1986

Intracellular localisation of phytochrome in oat coleoptiles by electron microscopy

Volker Speth; V. Otto; Eberhard Schäfer

We have analysed the intracellular localisation of phytochrome in oat coleoptile cells by electron microscopy and confirm and extend light-microscopical findings of previous authors. We used indirect immuno-labeling with polyclonal antibodies against 60-KDa phytochrome from etiolated oat seedlings, and a gold-coupled second antibody, on ultrathin sections of LR-white-embedded material. In dark-grown seedlings, phytochrome-labeling is distributed diffusely throughout the cytoplasm. Organelles and membranes are not labeled. After photoconversion of the red-absorbing form of phytochrome to the far-red absorbing form (Pfr) (5-min red light; 660 nm), the label is sequestered uniquely in electron-dense areas within the cytoplasm. These areas are irregularly shaped, are often located in the vicinity of the vacuole, are not surrounded by a membrane, exclude cellular organelles and ribosomes and are not found in dark-grown material; an immediate 5-min farred light pulse after the red light does not cause these structures to disappear. After a dark period of 3–4 h following red-light irradiation, these electron-dense structures disappear together with any specific labeling. We suggest a Pfr-induced aggregation of an unknown, phytochrome-binding protein or proteins.


Developmental Biology | 2008

Sox9 is required for invagination of the otic placode in mice.

Francisco Barrionuevo; Angela Naumann; Stefan Bagheri-Fam; Volker Speth; Makoto M. Taketo; Gerd Scherer; Annette Neubüser

The HMG-domain-containing transcription factor Sox9 is an important regulator of chondrogenesis, testis formation and development of several other organs. Sox9 is expressed in the otic placodes, the primordia of the inner ear, and studies in Xenopus have provided evidence that Sox9 is required for otic specification. Here we report novel and different functions of Sox9 during mouse inner ear development. We show that in mice with a Foxg1(Cre)-mediated conditional inactivation of Sox9 in the otic ectoderm, otic placodes form and express markers of otic specification. However, mutant placodes do not attach to the neural tube, fail to invaginate, and subsequently degenerate by apoptosis, resulting in a complete loss of otic structures. Transmission-electron microscopic analysis suggests that cell-cell contacts in the Sox9 mutant placodes are abnormal, although E-cadherin, N-cadherin, and beta-catenin protein expression are unchanged. In contrast, expression of Epha4 was downregulated in mutant placodes. In embryos with a Keratin-19(Cre)-mediated mosaic inactivation of Sox9, Sox9-negative and Sox9-positive cells in the otic ectoderm sort out from one another. In these embryos only Sox9-positive cells invaginate and form one or several micro-vesicles, whereas Sox9-negative cells stay behind and die. Our findings demonstrate that, in contrast to Xenopus, Sox9 is not required for the initial specification of the otic placode in the mouse, but instead controls adhesive properties and invagination of placodal cells in a cell-autonomous manner.


PLOS Pathogens | 2009

A Novel System of Cytoskeletal Elements in the Human Pathogen Helicobacter pylori

Barbara Waidner; Mara Specht; Felix Dempwolff; Katharina Haeberer; Sarah Schaetzle; Volker Speth; Manfred Kist; Peter L. Graumann

Pathogenicity of the human pathogen Helicobacter pylori relies upon its capacity to adapt to a hostile environment and to escape from the host response. Therefore, cell shape, motility, and pH homeostasis of these bacteria are specifically adapted to the gastric mucus. We have found that the helical shape of H. pylori depends on coiled coil rich proteins (Ccrp), which form extended filamentous structures in vitro and in vivo, and are differentially required for the maintenance of cell morphology. We have developed an in vivo localization system for this pathogen. Consistent with a cytoskeleton-like structure, Ccrp proteins localized in a regular punctuate and static pattern within H. pylori cells. Ccrp genes show a high degree of sequence variation, which could be the reason for the morphological diversity between H. pylori strains. In contrast to other bacteria, the actin-like MreB protein is dispensable for viability in H. pylori, and does not affect cell shape, but cell length and chromosome segregation. In addition, mreB mutant cells displayed significantly reduced urease activity, and thus compromise a major pathogenicity factor of H. pylori. Our findings reveal that Ccrp proteins, but not MreB, affect cell morphology, while both cytoskeletal components affect the development of pathogenicity factors and/or cell cycle progression.


Cell and Tissue Research | 1988

Human macrophage maturation and heterogeneity: restricted expression of late differentiation antigens in situ

Reinhard Andreesen; S. Gadd; Ulrich Costabel; Hans Georg Leser; Volker Speth; Branko Cesnik; Robert C. Atkins

SummaryTerminal maturation of human macrophages is an important step for creation of cell diversity amongst site-specific subpopulations and their functional competence in situ. As monocytes undergo differentiation in vitro, they start to express lineage-restricted antigens specific for differentiation stages beyond the blood monocyte level as detected by monoclonal antibodies of the MAX series. We have analyzed the expression of MAX.1, MAX.2, MAX.3 and MAX.11 on exudate-type macrophages from pleural and peritoneal cavity and the alveolar space, as well as on resident and activated tissue macrophages in cryostat sections of spleen, lymph node, tonsil, liver, gut mucosa, skin, placenta, kidney and bone. It was found that “free” macrophages in serous cavities expressed MAX antigens in a heterogenous pattern, whereas none of the organ-specific tissue macrophages subsets did so (with the exception being the weak label of MAX.2 on Kupffer cells). Only during allograft rejection were infiltrating macrophages found to express MAX antigens but not at sites of “nonspecific” inflammation or granuloma formation. However, Cyclosporin A treatment seems to suppress the induction of MAX antigen expression on intragraft macrophages. In addition, freshly harvested MAX-negative exudate macrophages converted to the complete Max+ phenotype on further cultivation. Isolated Kupffer cells were able only to express the MAX.2 antigen in culture but still did not react with the MAX.1 and MAX.3 monoclonal antibodies. Some MAX antigens are co-expressed on glomerular mesangial cells, dendritic reticulum cells and placental cells (MAX.1/. 11) as well as on capillary endothelium within tissues of active immune response (MAX.2). These results add to the knowledge of the phenotypic heterogeneity within the macrophage system as a result of site-specific influences and modulation during a cell-mediated immune response. They also give evidence for a major difference between “free” exudate-type macrophages and resident tissue macrophages.

Collaboration


Dive into the Volker Speth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Kunkel

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Bergfeld

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge