Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Vallon is active.

Publication


Featured researches published by Volker Vallon.


Journal of Clinical Investigation | 2002

Impaired renal Na+ retention in the sgk1-knockout mouse

Peer Wulff; Volker Vallon; Dan Yang Huang; Harald Völkl; Fang Yu; Kerstin Richter; Martina Jansen; Michaela Schlünz; Karin Klingel; Johannes Loffing; Gunther Kauselmann; Michael R. Bösl; Florian Lang; Dietmar Kuhl

The serum- and glucocorticoid-regulated kinase (sgk1) is induced by mineralocorticoids and, in turn, upregulates heterologously expressed renal epithelial Na(+) channel (ENaC) activity in Xenopus oocytes. Accordingly, Sgk1 is considered to mediate the mineralocorticoid stimulation of renal ENaC activity and antinatriuresis. Here we show that at standard NaCl intake, renal water and electrolyte excretion is indistinguishable in sgk1-knockout (sgk1(-/-)) mice and wild-type (sgk1(+/+)) mice. In contrast, dietary NaCl restriction reveals an impaired ability of sgk1(-/-) mice to adequately decrease Na(+) excretion despite increases in plasma aldosterone levels and proximal-tubular Na(+) and fluid reabsorption, as well as decreases in blood pressure and glomerular filtration rate.


Journal of Clinical Investigation | 2003

Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5

Joost G. J. Hoenderop; Johannes P.T.M. van Leeuwen; Bram C. J. van der Eerden; Ferry F.J. Kersten; Annemiete W.C.M. van derKemp; Anne-Marie Mérillat; J.H. Waarsing; Bernard C. Rossier; Volker Vallon; Edith Hummler; René J. M. Bindels

Ca2+ ions play a fundamental role in many cellular processes, and the extracellular concentration of Ca2+ is kept under strict control to allow the proper physiological functions to take place. The kidney, small intestine, and bone determine the Ca2+ flux to the extracellular Ca2+ pool in a concerted fashion. Transient receptor potential (TRP) cation channel subfamily V, members 5 and 6 (TRPV5 and TRPV6) have recently been postulated to be the molecular gatekeepers facilitating Ca2+ influx in these tissues and are members of the TRP family, which mediates diverse biological effects ranging from pain perception to male aggression. Genetic ablation of TRPV5 in the mouse allowed us to investigate the function of this novel Ca2+ channel in maintaining the Ca2+ balance. Here, we demonstrate that mice lacking TRPV5 display diminished active Ca2+ reabsorption despite enhanced vitamin D levels, causing severe hypercalciuria. In vivo micropuncture experiments demonstrated that Ca2+ reabsorption was malfunctioning within the early part of the distal convolution, exactly where TRPV5 is localized. In addition, compensatory hyperabsorption of dietary Ca2+ was measured in TRPV5 knockout mice. Furthermore, the knockout mice exhibited significant disturbances in bone structure, including reduced trabecular and cortical bone thickness. These data demonstrate the key function of TRPV5 in active Ca2+ reabsorption and its essential role in the Ca2+ homeostasis.


Diabetes | 2012

Na+-d-glucose Cotransporter SGLT1 is Pivotal for Intestinal Glucose Absorption and Glucose-Dependent Incretin Secretion

Valentin Gorboulev; Annette Schürmann; Volker Vallon; Helmut Kipp; Alexander Jaschke; Dirk Klessen; Alexandra Friedrich; Stephan Scherneck; Timo Rieg; Robyn Cunard; Maike Veyhl-Wichmann; Aruna Srinivasan; Daniela Balen; Davorka Breljak; Rexhep Rexhepaj; Helen Parker; Fiona M. Gribble; Frank Reimann; Florian Lang; Stefan Wiese; Ivan Sabolić; Michael Sendtner; Hermann Koepsell

To clarify the physiological role of Na+-d-glucose cotransporter SGLT1 in small intestine and kidney, Sglt1−/− mice were generated and characterized phenotypically. After gavage of d-glucose, small intestinal glucose absorption across the brush-border membrane (BBM) via SGLT1 and GLUT2 were analyzed. Glucose-induced secretion of insulinotropic hormone (GIP) and glucagon-like peptide 1 (GLP-1) in wild-type and Sglt1−/− mice were compared. The impact of SGLT1 on renal glucose handling was investigated by micropuncture studies. It was observed that Sglt1−/− mice developed a glucose-galactose malabsorption syndrome but thrive normally when fed a glucose-galactose–free diet. In wild-type mice, passage of d-glucose across the intestinal BBM was predominantly mediated by SGLT1, independent the glucose load. High glucose concentrations increased the amounts of SGLT1 and GLUT2 in the BBM, and SGLT1 was required for upregulation of GLUT2. SGLT1 was located in luminal membranes of cells immunopositive for GIP and GLP-1, and Sglt1−/− mice exhibited reduced glucose-triggered GIP and GLP-1 levels. In the kidney, SGLT1 reabsorbed ∼3% of the filtered glucose under normoglycemic conditions. The data indicate that SGLT1 is 1) pivotal for intestinal mass absorption of d-glucose, 2) triggers the glucose-induced secretion of GIP and GLP-1, and 3) triggers the upregulation of GLUT2.


Journal of Clinical Investigation | 2005

Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia.

Tom Nijenhuis; Volker Vallon; Annemiete W.C.M. van der Kemp; Johannes Loffing; Joost G.J. Hoenderop; René J. M. Bindels

Thiazide diuretics enhance renal Na+ excretion by blocking the Na+-Cl- cotransporter (NCC), and mutations in NCC result in Gitelman syndrome. The mechanisms underlying the accompanying hypocalciuria and hypomagnesemia remain debated. Here, we show that enhanced passive Ca2+ transport in the proximal tubule rather than active Ca2+ transport in distal convolution explains thiazide-induced hypocalciuria. First, micropuncture experiments in mice demonstrated increased reabsorption of Na+ and Ca2+ in the proximal tubule during chronic hydrochlorothiazide (HCTZ) treatment, whereas Ca2+ reabsorption in distal convolution appeared unaffected. Second, HCTZ administration still induced hypocalciuria in transient receptor potential channel subfamily V, member 5-knockout (Trpv5-knockout) mice, in which active distal Ca2+ reabsorption is abolished due to inactivation of the epithelial Ca2+ channel Trpv5. Third, HCTZ upregulated the Na+/H+ exchanger, responsible for the majority of Na+ and, consequently, Ca2+ reabsorption in the proximal tubule, while the expression of proteins involved in active Ca2+ transport was unaltered. Fourth, experiments addressing the time-dependent effect of a single dose of HCTZ showed that the development of hypocalciuria parallels a compensatory increase in Na+ reabsorption secondary to an initial natriuresis. Hypomagnesemia developed during chronic HCTZ administration and in NCC-knockout mice, an animal model of Gitelman syndrome, accompanied by downregulation of the epithelial Mg2+ channel transient receptor potential channel subfamily M, member 6 (Trpm6). Thus, Trpm6 downregulation may represent a general mechanism involved in the pathogenesis of hypomagnesemia accompanying NCC inhibition or inactivation.


Journal of The American Society of Nephrology | 2011

SGLT2 Mediates Glucose Reabsorption in the Early Proximal Tubule

Volker Vallon; Kenneth A. Platt; Robyn Cunard; Jana Schroth; Jean Whaley; Scott C. Thomson; Hermann Koepsell; Timo Rieg

Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

The proximal tubule in the pathophysiology of the diabetic kidney

Volker Vallon

Diabetic nephropathy is a leading cause of end-stage renal disease. A better understanding of the molecular mechanism involved in the early changes of the diabetic kidney may permit the development of new strategies to prevent diabetic nephropathy. This review focuses on the proximal tubule in the early diabetic kidney, particularly on its exposure and response to high glucose levels, albuminuria, and other factors in the diabetic glomerular filtrate, the hyperreabsorption of glucose, the unique molecular signature of the tubular growth phenotype, including aspects of senescence, and the resulting cellular and functional consequences. The latter includes the local release of proinflammatory chemokines and changes in proximal tubular salt and fluid reabsorption, which form the basis for the strong tubular control of glomerular filtration in the early diabetic kidney, including glomerular hyperfiltration and odd responses like the salt paradox. Importantly, these early proximal tubular changes can set the stage for oxidative stress, inflammation, hypoxia, and tubulointerstitial fibrosis, and thereby for the progression of diabetic renal disease.


Journal of Clinical Investigation | 2001

Ornithine decarboxylase, kidney size, and the tubular hypothesis of glomerular hyperfiltration in experimental diabetes

Scott C. Thomson; Aihua Deng; Dingjiu Bao; Joseph Satriano; Roland C. Blantz; Volker Vallon

In early diabetes, the kidney grows and the glomerular filtration rate (GFR) increases. This growth is linked to ornithine decarboxylase (ODC). The study of hyperfiltration has focused on microvascular abnormalities, but hyperfiltration may actually result from a prior increase in capacity for proximal reabsorption which reduces the signal for tubuloglomerular feedback (TGF). Experiments were performed in Wistar rats after 1 week of streptozotocin diabetes. Kidney weight, ODC activity, and GFR were correlated in diabetic and control rats given difluoromethylornithine (DFMO; Marion Merrell Dow, Cincinnati, Ohio, USA) to inhibit ODC. We assessed proximal reabsorption by micropuncture, using TGF as a tool for manipulating single-nephron GFR (SNGFR), then plotting proximal reabsorption versus SNGFR. ODC activity was elevated 15-fold in diabetic kidneys and normalized by DFMO, which also attenuated hyperfiltration and hypertrophy. Micropuncture data revealed an overall increase in proximal reabsorption in diabetic rats too great to be accounted for by glomerulotubular balance. DFMO prevented the overall increase in proximal reabsorption. These data confirm that ODC is required for the full effect of diabetes on kidney size and proximal reabsorption in early streptozotocin diabetes and are consistent with the hypothesis that diabetic hyperfiltration results from normal physiologic actions of TGF operating in a larger kidney, independent of any primary malfunction of the glomerular microvasculature.


American Journal of Physiology-renal Physiology | 2009

Expression and phosphorylation of the Na+-Cl- cotransporter NCC in vivo is regulated by dietary salt, potassium, and SGK1.

Volker Vallon; Jana Schroth; Florian Lang; Dietmar Kuhl; Shinichi Uchida

The Na-Cl cotransporter NCC is expressed in the distal convoluted tubule, activated by phosphorylation, and has been implicated in renal NaCl and K(+) homeostasis. The serum and glucocorticoid inducible kinase 1 (SGK1) contributes to renal NaCl retention and K(+) excretion, at least in part, by stimulating the epithelial Na(+) channel and Na(+)-K(+)-ATPase in the downstream segments of aldosterone-sensitive Na(+)/K(+) exchange. In this study we confirmed in wild-type mice (WT) that dietary NaCl restriction increases renal NCC expression and its phosphorylation at Thr(53), Thr(58), and Ser(71), respectively. This response, however, was attenuated in mice lacking SGK1 (Sgk1(-/-)), which may contribute to impaired NaCl retention in those mice. Total renal NCC expression and phosphorylation at Thr(53), Thr(58), and Ser(71) in WT were greater under low- compared with high-K(+) diet. This finding is consistent with a regulation of NCC to modulate Na(+) delivery to downstream segments of Na(+)/K(+) exchange, thereby modulating K(+) excretion. Dietary K(+)-dependent variation in renal expression of total NCC and phosphorylated NCC were not attenuated in Sgk1(-/-) mice. In fact, high-K(+) diet-induced NCC suppression was enhanced in Sgk1(-/-) mice. The hyperkalemia induced in Sgk1(-/-) mice by a high-K(+) diet may have augmented NCC suppression, thereby increasing Na(+) delivery and facilitating K(+) excretion in downstream segments of impaired Na(+)/K(+) exchange. In summary, changes in NaCl and K(+) intake altered NCC expression and phosphorylation, an observation consistent with a role of NCC in NaCl and K(+) homeostasis. The two maneuvers dissociated plasma aldosterone levels from NCC expression and phosphorylation, implicating additional regulators. Regulation of NCC expression and phosphorylation by dietary NaCl restriction appears to involve SGK1.


American Journal of Physiology-renal Physiology | 2014

SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice

Volker Vallon; Maria Gerasimova; Michael Rose; Takahiro Masuda; Joseph Satriano; Eric Mayoux; Hermann Koepsell; Scott C. Thomson; Timo Rieg

Our previous work has shown that gene knockout of the sodium-glucose cotransporter SGLT2 modestly lowered blood glucose in streptozotocin-diabetic mice (BG; from 470 to 300 mg/dl) and prevented glomerular hyperfiltration but did not attenuate albuminuria or renal growth and inflammation. Here we determined effects of the SGLT2 inhibitor empagliflozin (300 mg/kg of diet for 15 wk; corresponding to 60-80 mg·kg(-1)·day(-1)) in type 1 diabetic Akita mice that, opposite to streptozotocin-diabetes, upregulate renal SGLT2 expression. Akita diabetes, empagliflozin, and Akita + empagliflozin similarly increased renal membrane SGLT2 expression (by 38-56%) and reduced the expression of SGLT1 (by 33-37%) vs. vehicle-treated wild-type controls (WT). The diabetes-induced changes in SGLT2/SGLT1 protein expression are expected to enhance the BG-lowering potential of SGLT2 inhibition, and empagliflozin strongly lowered BG in Akita (means of 187-237 vs. 517-535 mg/dl in vehicle group; 100-140 mg/dl in WT). Empagliflozin modestly reduced GFR in WT (250 vs. 306 μl/min) and completely prevented the diabetes-induced increase in glomerular filtration rate (GFR) (255 vs. 397 μl/min). Empagliflozin attenuated increases in kidney weight and urinary albumin/creatinine ratio in Akita in proportion to hyperglycemia. Empagliflozin did not increase urinary glucose/creatinine ratios in Akita, indicating the reduction in filtered glucose balanced the inhibition of glucose reabsorption. Empagliflozin attenuated/prevented the increase in systolic blood pressure, glomerular size, and molecular markers of kidney growth, inflammation, and gluconeogenesis in Akita. We propose that SGLT2 inhibition can lower GFR independent of reducing BG (consistent with the tubular hypothesis of diabetic glomerular hyperfiltration), while attenuation of albuminuria, kidney growth, and inflammation in the early diabetic kidney may mostly be secondary to lower BG.


Journal of Biological Chemistry | 2006

Decreased Renal Organic Anion Secretion and Plasma Accumulation of Endogenous Organic Anions in OAT1 Knock-out Mice

Satish A. Eraly; Volker Vallon; Duke A. Vaughn; Jon A. Gangoiti; Kerstin Richter; Megha Nagle; Julio C. Monte; Timo Rieg; David M. Truong; Jeffrey M. Long; Bruce Barshop; Gregory Kaler; Sanjay K. Nigam

The “classical” organic anion secretory pathway of the renal proximal tubule is critical for the renal excretion of the prototypic organic anion, para-aminohippurate, as well as of a large number of commonly prescribed drugs among other significant substrates. Organic anion transporter 1 (OAT1), originally identified as NKT (Lopez-Nieto, C. E., You, G., Bush, K. T., Barros, E. J. G., Beier, D. R., and Nigam, S. K. (1997) J. Biol. Chem. 272, 6471–6478), has physiological properties consistent with a role in this pathway. However, several other transporters (e.g. OAT2, OAT3, and MRP1) have also been proposed as important PAH transporters on the basis of in vitro studies; therefore, the relative contribution of OAT1 has remained unclear. We have now generated a colony of OAT1 knock-out mice, permitting elucidation of the role of OAT1 in the context of these other potentially functionally redundant transporters. We find that the knock-out mice manifest a profound loss of organic anion transport (e.g. para-aminohippurate) both ex vivo (in isolated renal slices) as well as in vivo (as indicated by loss of renal secretion). In the case of the organic anion, furosemide, loss of renal secretion in the knock-out results in impaired diuretic responsiveness to this drug. These results indicate a critical role for OAT1 in the functioning of the classical pathway. In addition, we have determined the levels of ∼60 endogenous organic anions in the plasma and urine of wild-type and knock-out mice. This has led to identification of several compounds with significantly higher plasma concentrations and/or lower urinary concentrations in knock-out mice, suggesting the involvement of OAT1 in their renal secretion. We have also demonstrated in xenopus oocytes that some of these compounds interact with OAT1 in vitro. Thus, these latter compounds might represent physiological substrates of OAT1.

Collaboration


Dive into the Volker Vallon's collaboration.

Top Co-Authors

Avatar

Timo Rieg

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Florian Lang

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul A. Insel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge