Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Volker Wulfmeyer is active.

Publication


Featured researches published by Volker Wulfmeyer.


Bulletin of the American Meteorological Society | 2008

The Convective and Orographically Induced Precipitation Study:A Research and Development Project of the World Weather Research Program for Improving Quantitative Precipitation Forecasting in Low-mountain Regions

Volker Wulfmeyer; Andreas Behrendt; Hans-Stefan Bauer; C. Kottmeier; U. Corsmeier; Alan M. Blyth; George C. Craig; Ulrich Schumann; Martin Hagen; Susanne Crewell; Paolo Di Girolamo; Cyrille Flamant; Mark A. Miller; A. Montani; S. D. Mobbs; Evelyne Richard; Mathias W. Rotach; Marco Arpagaus; H.W.J. Russchenberg; Peter Schlüssel; Marianne König; Volker Gärtner; Reinhold Steinacker; Manfred Dorninger; David D. Turner; Tammy M. Weckwerth; Andreas Hense; Clemens Simmer

Abstract The international field campaign called the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007 in southwestern Germany/eastern France. The overarching goal of COPS is to advance the quality of forecasts of orographically-induced convective precipitation by four-dimensional observations and modeling of its life cycle. COPS was endorsed as one of the Research and Development Projects of the World Weather Research Program (WWRP), and combines the efforts of institutions and scientists from eight countries. A strong collaboration between instrument principal investigators and experts on mesoscale modeling has been established within COPS. In order to study the relative importance of large-scale and small-scale forcing leading to convection initiation in low mountains, COPS is coordinated with a one-year General Observations Period in central Europe, the WWRP Forecast Demonstration Project MAP D-PHASE, and the first summertime European THORPEX Regional...


Bulletin of the American Meteorological Society | 2009

MAP D-PHASE: Real-Time Demonstration of Weather Forecast Quality in the Alpine Region

Mathias W. Rotach; Paolo Ambrosetti; Felix Ament; Christof Appenzeller; Marco Arpagaus; Hans-Stefan Bauer; Andreas Behrendt; François Bouttier; Andrea Buzzi; Matteo Corazza; Silvio Davolio; Michael Denhard; Manfred Dorninger; Lionel Fontannaz; Jacqueline Frick; Felix Fundel; Urs Germann; Theresa Gorgas; Christiph Hegg; Aalessandro Hering; Christian Keil; Mark A. Liniger; Chiara Marsigli; Ron McTaggart-Cowan; Andrea Montaini; Ken Mylne; Roberto Ranzi; Evelyne Richard; Andrea Rossa; Daniel Santos-Muñoz

Demonstration of probabilistic hydrological and atmospheric simulation of flood events in the Alpine region (D-PHASE) is made by the Forecast Demonstration Project in connection with the Mesoscale Alpine Programme (MAP). Its focus lies in the end-to-end flood forecasting in a mountainous region such as the Alps and surrounding lower ranges. Its scope ranges from radar observations and atmospheric and hydrological modeling to the decision making by the civil protection agents. More than 30 atmospheric high-resolution deterministic and probabilistic models coupled to some seven hydrological models in various combinations provided real-time online information. This information was available for many different catchments across the Alps over a demonstration period of 6 months in summer/ fall 2007. The Web-based exchange platform additionally contained nowcasting information from various operational services and feedback channels for the forecasters and end users. D-PHASE applications include objective model verification and intercomparison, the assessment of (subjective) end user feedback, and evaluation of the overall gain from the coupling of the various components in the end-to-end forecasting system.


Environmental Earth Sciences | 2013

Catchments as reactors: a comprehensive approach for water fluxes and solute turnover

Peter Grathwohl; Hermann Rügner; Thomas Wöhling; Karsten Osenbrück; Marc Schwientek; Sebastian Gayler; Ute Wollschläger; Benny Selle; Marion Pause; Jens-Olaf Delfs; Matthias Grzeschik; Ulrich Weller; Martin Ivanov; Olaf A. Cirpka; Uli Maier; Volker Wulfmeyer; Thilo Streck; Sabine Attinger; Peter Dietrich; Jan H. Fleckenstein; Olaf Kolditz; Hans-Jörg Vogel

Sustainable water quality management requires a profound understanding of water fluxes (precipitation, run-off, recharge, etc.) and solute turnover such as retention, reaction, transformation, etc. at the catchment or landscape scale. The Water and Earth System Science competence cluster (WESS, http://www.wess.info/) aims at a holistic analysis of the water cycle coupled to reactive solute transport, including soil–plant–atmosphere and groundwater–surface water interactions. To facilitate exploring the impact of land-use and climate changes on water cycling and water quality, special emphasis is placed on feedbacks between the atmosphere, the land surface, and the subsurface. A major challenge lies in bridging the scales in monitoring and modeling of surface/subsurface versus atmospheric processes. The field work follows the approach of contrasting catchments, i.e. neighboring watersheds with different land use or similar watersheds with different climate. This paper introduces the featured catchments and explains methodologies of WESS by selected examples.


Journal of the Atmospheric Sciences | 1999

Investigation of Turbulent Processes in the Lower Troposphere with Water Vapor DIAL and Radar–RASS

Volker Wulfmeyer

Abstract High-resolution water vapor and wind measurements in the lower troposphere within the scope of the Baltic Sea Experiment (BALTEX) are presented. The measurements were performed during a field campaign with a new water vapor differential absorption lidar (DIAL) system and a radar–radio acoustic sounding system (radar–RASS). The analysis of a continuous 24-h measurement period shows that the resolution and the accuracy of these instruments are capable of measuring profiles of water vapor and vertical wind fluctuation moments up to the second order to investigate turbulent processes in the convective boundary layer. Besides the high-resolution data obtained with each instrument it is their combination that yields a further important variable in the boundary layer: the turbulent latent heat flux measured directly using the eddy correlation method. The results demonstrate that active remote sensing instruments like DIAL and radar–RASS can be routinely applied to provide previously unavailable datasets...


Applied Optics | 2005

Diode-pumped Nd:YAG master oscillator power amplifier with high pulse energy, excellent beam quality, and frequency-stabilized master oscillator as a basis for a next-generation lidar system

Martin Ostermeyer; Philip Kappe; Ralf Menzel; Volker Wulfmeyer

A pulsed, diode-laser-pumped Nd:YAG master oscillator power amplifier (MOPA) in rod geometry, frequency stabilized with a modified Pound-Drever-Hall scheme is presented. The apparatus delivers 33-ns pulses with a maximum pulse energy of 0.5 J at 1064 nm. The system was set up in two different configurations for repetition rates of 100 or 250 Hz. The beam quality was measured to be 1.5 times the diffraction limit at a pulse energy of 405 mJ and a repetition rate of 100 Hz. At 250 Hz with the same pulse energy, the M2 was better than 2.1. The radiation is frequency converted with an efficiency of 50% to 532 nm. This MOPA system will be the pump laser of transmitters for a variety of high-end, scanning lidar systems.


Climate Dynamics | 2013

Evaluation of a climate simulation in Europe based on the WRF–NOAH model system: precipitation in Germany

Kirsten Warrach-Sagi; Thomas Schwitalla; Volker Wulfmeyer; Hans-Stefan Bauer

The Weather Research and Forecast (WRF) model with its land surface model NOAH was set up and applied as regional climate model over Europe. It was forced with the latest ERA-interim reanalysis data from 1989 to 2008 and operated with 0.33° and 0.11° resolution. This study focuses on the verification of monthly and seasonal mean precipitation over Germany, where a high quality precipitation dataset of the German Weather Service is available. In particular, the precipitation is studied in the orographic terrain of southwestern Germany and the dry lowlands of northeastern Germany. In both regions precipitation data is very important for end users such as hydrologists and farmers. Both WRF simulations show a systematic positive precipitation bias not apparent in ERA-interim and an overestimation of wet day frequency. The downscaling experiment improved the annual cycle of the precipitation intensity, which is underestimated by ERA-interim. Normalized Taylor diagrams, i.e., those discarding the systematic bias by normalizing the quantities, demonstrate that downscaling with WRF provides a better spatial distribution than the ERA interim precipitation analyses in southwestern Germany and most of the whole of Germany but degrades the results for northeastern Germany. At the applied model resolution of 0.11°, WRF shows typical systematic errors of RCMs in orographic terrain such as the windward–lee effect. A convection permitting case study set up for summer 2007 improved the precipitation simulations with respect to the location of precipitation maxima in the mountainous regions and the spatial correlation of precipitation. This result indicates the high value of regional climate simulations on the convection-permitting scale.


Monthly Weather Review | 2006

Four-Dimensional Variational Assimilation of Water Vapor Differential Absorption Lidar Data: The First Case Study within IHOP_2002

Volker Wulfmeyer; Hans-Stefan Bauer; Matthias Grzeschik; Andreas Behrendt; Francois Vandenberghe; Edward V. Browell; Syed Ismail; Richard A. Ferrare

Four-dimensional variational assimilation of water vapor differential absorption lidar (DIAL) data has been applied for investigating their impact on the initial water field for mesoscale weather forecasting. A case that was observed during the International H2O Project (IHOP_2002) has been selected. During 24 May 2002, data from the NASA Lidar Atmospheric Sensing Experiment were available upstream of a convective system that formed later along the dryline and a cold front. Tools were developed for routinely assimilating water vapor DIAL data into the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5). The results demonstrate a large impact on the initial water vapor field. This is due to the high resolution and accuracy of DIAL data making the observation of the high spatial variability of humidity in the region of the dryline and of the cold front possible. The water vapor field is mainly adjusted by a modification of the atmospheric wind field changing the moisture transport. A positive impact of the improved initial fields on the spatial/temporal prediction of convective initiation is visible. The results demonstrate the high value of accurate, vertically resolved mesoscale water vapor observations and advanced data assimilation systems for short-range weather forecasting.


Journal of Atmospheric and Oceanic Technology | 2007

Intercomparison of Water Vapor Data Measured with Lidar during IHOP_2002. Part I: Airborne to Ground-Based Lidar Systems and Comparisons with Chilled-Mirror Hygrometer Radiosondes

Andreas Behrendt; Volker Wulfmeyer; Paolo Di Girolamo; Christoph Kiemle; Hans-Stefan Bauer; Thorsten Schaberl; Donato Summa; David N. Whiteman; Belay Demoz; Edward V. Browell; Syed Ismail; Richard A. Ferrare; Susan A. Kooi; Gerhard Ehret; Junhong Wang; Nasa Gsfc

Abstract The water vapor data measured with airborne and ground-based lidar systems during the International H2O Project (IHOP_2002), which took place in the Southern Great Plains during 13 May–25 June 2002 were investigated. So far, the data collected during IHOP_2002 provide the largest set of state-of-the-art water vapor lidar data measured in a field campaign. In this first of two companion papers, intercomparisons between the scanning Raman lidar (SRL) of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) and two airborne systems are discussed. There are 9 intercomparisons possible between SRL and the differential absorption lidar (DIAL) of Deutsches Zentrum fur Luft- und Raumfahrt (DLR), while there are 10 intercomparisons between SRL and the Lidar Atmospheric Sensing Experiment (LASE) of the NASA Langley Research Center. Mean biases of (−0.30 ± 0.25) g kg−1 or −4.3% ± 3.2% for SRL compared to DLR DIAL (DLR DIAL drier) and (0.16 ± 0.31) g kg−1 or 5.3% ± 5.1% ...


Journal of Geophysical Research | 2000

On the relationship between relative humidity and particle backscattering coefficient in the marine boundary layer determined with differential absorption lidar

Volker Wulfmeyer; Graham Feingold

A ground-based water-vapor differential absorption lidar (DIAL) has been applied to investigate aerosol properties in the convective marine boundary layer. The high resolution and accuracy of this instrument enables measurement of the particle backscattering coefficient β par and the absolute humidity under a single boundary layer cloud, so the hygroscopic growth of the aerosol can be investigated in a single profile over a large range of the relative humidity RH. Arguing that the convective boundary layer was adiabatic and using the DIAL absolute humidity measurements, the relation β par (RH) has been determined. This relation is compared with a simple aerosol model. Assuming that the simplifications are valid, it follows that β par (RH) is mainly sensitive to variations in the mass fraction of soluble material e of an internally mixed aerosol. Applying this model to the experimental data, we found e was in the range of 0.05-0.27 during the measurements. These values are consistent with those from in situ particle analyses at other anthropogenically influenced sites. These rather low soluble mass fractions have strong implications for the magnitude of both aerosol direct and indirect effects.


Environmental Earth Sciences | 2014

Concept and workflow for 3D visualization of atmospheric data in a virtual reality environment for analytical approaches

Carolin Helbig; Hans-Stefan Bauer; Karsten Rink; Volker Wulfmeyer; Michael Frank; Olaf Kolditz

In the future, climate change will strongly influence our environment and living conditions. Weather and Climate simulations that predict possible changes produce big data sets. The combination of various variables of climate models with spatial data from different sources helps to identify correlations and to study key processes. In this paper, the results of the Weather Research and Forecasting model are visualized for two regions. For this purpose, a continuous workflow that leads from the integration of heterogeneous raw data to 3D visualizations that can be displayed on a desktop computer or in an interactive virtual reality environment is developed. These easy-to-understand visualizations of complex data are the basis for scientific communication and for the evaluation and verification of models as well as for interdisciplinary discussions of the research results.

Collaboration


Dive into the Volker Wulfmeyer's collaboration.

Researchain Logo
Decentralizing Knowledge