Volkher B. Scholz
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Volkher B. Scholz.
Journal of Mathematical Physics | 2011
Andre Ahlbrecht; Volkher B. Scholz; A. H. Werner
We study a spin-1/2-particle moving on a one dimensional lattice subject to disorder induced by a random, space-dependent quantum coin. The discrete time evolution is given by a family of random unitary quantum walk operators, where the shift operation is assumed to be deterministic. Each coin is an independent identically distributed random variable with values in the group of two dimensional unitary matrices. We derive sufficient conditions on the probability distribution of the coins such that the system exhibits dynamical localization. Put differently, the tunneling probability between two lattice sites decays rapidly for almost all choices of random coins and after arbitrary many time steps with increasing distance. Our findings imply that this effect takes place if the coin is chosen at random from the Haar measure, or some measure continuous with respect to it, but also for a class of discrete probability measures which support consists of two coins, one of them being the Hadamard coin.
Physical Review Letters | 2015
Mathis Friesdorf; A. H. Werner; Winton G. Brown; Volkher B. Scholz; Jens Eisert
The phenomenon of many-body localization has received a lot of attention recently, both for its implications in condensed-matter physics of allowing systems to be an insulator even at nonzero temperature as well as in the context of the foundations of quantum statistical mechanics, providing examples of systems showing the absence of thermalization following out-of-equilibrium dynamics. In this work, we establish a novel link between dynamical properties--a vanishing group velocity and the absence of transport--with entanglement properties of individual eigenvectors. For systems with a generic spectrum, we prove that strong dynamical localization implies that all of its many-body eigenvectors have clustering correlations. The same is true for parts of the spectrum, thus allowing for the existence of a mobility edge above which transport is possible. In one dimension these results directly imply an entanglement area law; hence, the eigenvectors can be efficiently approximated by matrix-product states.
New Journal of Physics | 2012
Andre Ahlbrecht; Andrea Alberti; Dieter Meschede; Volkher B. Scholz; A. H. Werner; Reinhard Werner
We show that the presence of an interaction in the quantum walk of two atoms leads to the formation of a stable compound, a molecular state. The wave function of the molecule decays exponentially in the relative position of the two atoms; hence it constitutes a true bound state. Furthermore, for a certain class of interactions, we develop an effective theory and find that the dynamics of the molecule is described by a quantum walk in its own right. We propose a setup for the experimental realization as well as sketch the possibility to observe quasi-particle effects in quantum many-body systems.
Journal of Mathematical Physics | 2014
Fabian Furrer; Mario Berta; Marco Tomamichel; Volkher B. Scholz; Matthias Christandl
A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg’s original setting of position and momentum observables. Here, we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.
Journal of Mathematical Physics | 2016
Mario Berta; Fabian Furrer; Volkher B. Scholz
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
Quantum Information Processing | 2012
Andre Ahlbrecht; C. Cedzich; Robert Matjeschk; Volkher B. Scholz; A. H. Werner; Reinhard Werner
Quantum walks subject to decoherence generically suffer the loss of their genuine quantum feature, a quadratically faster spreading compared to classical random walks. This intuitive statement has been verified analytically for certain models and is also supported by numerical studies of a variety of examples. In this paper we analyze the long-time behavior of a particular class of decoherent quantum walks, which, to the best of our knowledge, was only studied at the level of numerical simulations before. We consider a local coin operation which is randomly and independently chosen for each time step and each lattice site and prove that, under rather mild conditions, this leads to classical behavior: With the same scaling as needed for a classical diffusion the position distribution converges to a Gaussian, which is independent of the initial state. Our method is based on non-degenerate perturbation theory and yields an explicit expression for the covariance matrix of the asymptotic Gaussian in terms of the randomness parameters.
international symposium on information theory | 2015
David Sutter; Volkher B. Scholz; Renato Renner
Degradable quantum channels are an important class of completely positive trace-preserving maps. Among other properties, they offer a single-letter formula for the quantum and the private classical capacity and are characterized by the fact that the complementary channel can be obtained from the channel by applying a degrading map. In this work we introduce the concept of approximate degradable channels, which satisfy this condition up to some finite ε ≥ 0. That is, there exists a degrading map which upon composition with the channel is ε-close in the diamond norm to the complementary channel. We show that for any fixed channel the smallest such ε can be efficiently determined via a semidefinite program. Moreover, these approximate degradable channels also approximately inherit all other properties of degradable channels. As an application, we derive improved upper bounds to the quantum and private classical capacity for certain channels of interest in quantum communication.
arXiv: Mathematical Physics | 2013
Bruno Nachtergaele; Volkher B. Scholz; Reinhard Werner
We discuss conditional expectations that can be used as generalizations of the partial trace for quantum systems with an infinite-dimensional Hilbert space of states.
IEEE Transactions on Information Theory | 2017
Mario Berta; Omar Fawzi; Volkher B. Scholz
Quantum-proof randomness extractors are an important building block for classical and quantum cryptography as well as device independent randomness amplification and expansion. Furthermore, they are also a useful tool in quantum Shannon theory. It is known that some extractor constructions are quantum-proof whereas others are provably not [Gavinsky et al., STOC’07]. We argue that the theory of operator spaces offers a natural framework for studying to what extent extractors are secure against quantum adversaries: we first phrase the definition of extractors as a bounded norm condition between normed spaces, and then show that the presence of quantum adversaries corresponds to a completely bounded norm condition between operator spaces. From this, we show that very high min-entropy extractors as well as extractors with small output are always (approximately) quantum-proof. We also study a generalization of extractors called randomness condensers. We phrase the definition of condensers as a bounded norm condition and the definition of quantum-proof condensers as a completely bounded norm condition. Seeing condensers as bipartite graphs, we then find that the bounded norm condition corresponds to an instance of a well-studied combinatorial problem, called bipartite densest subgraph. Furthermore, using the characterization in terms of operator spaces, we can associate to any condenser a Bell inequality (two-player game), such that classical and quantum strategies are in one-to-one correspondence with classical and quantum attacks on the condenser. Hence, we get for every quantum-proof condenser (which includes in particular quantum-proof extractors) a Bell inequality that cannot be violated by quantum mechanics.
conference on theory of quantum computation communication and cryptography | 2016
Rotem Arnon-Friedman; Christopher Portmann; Volkher B. Scholz
Randomness extractors, widely used in classical and quantum cryptography and other fields of computer science, e.g., derandomization, are functions which generate almost uniform randomness from weak sources of randomness. In the quantum setting one must take into account the quantum side information held by an adversary which might be used to break the security of the extractor. In the case of seeded extractors the presence of quantum side information has been extensively studied. For multi-source extractors one can easily see that high conditional min-entropy is not sufficient to guarantee security against arbitrary side information, even in the classical case. Hence, the interesting question is under which models of (both quantum and classical) side information multi-source extractors remain secure. In this work we suggest a natural model of side information, which we call the Markov model, and prove that any multi-source extractor remains secure in the presence of quantum side information of this type (albeit with weaker parameters). This improves on previous results in which more restricted models were considered and the security of only some types of extractors was shown.