Vrushank Davé
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vrushank Davé.
Chemical Reviews | 2014
Vladimir N. Uversky; Vrushank Davé; Lilia M. Iakoucheva; Prerna Malaney; Steven J. Metallo; Ravi Ramesh Pathak; Andreas C. Joerger
Many biologically important proteins lack stable tertiary and/or secondary structure under physiological conditions in vitro as a whole or in part.1–5 These intrinsically disordered proteins (IDPs), or intrinsically disordered protein regions (IDPRs) of hybrid proteins possessing both structured and disordered domains, do not have unique well-defined 3D structures, existing instead as collapsed or extended dynamically mobile conformational ensembles. Therefore, natural proteins can be found in one of three major protein forms: functional and folded, nonfunctional and misfolded, or functional and intrinsically disordered. Although IDPs and IDPRs are highly dynamic, their structures can be described reasonably well by a rather limited number of lower-energy conformations.6,7 The structural plasticity and conformational adaptability of IDPs/IDPRs and their intrinsic lack of rigid structure leads to a number of exceptional functional advantages, providing them with unique capabilities to act in functional modes not achievable by ordered proteins.5 As a result, intrinsic disorder is a common feature of proteins involved in signaling, regulation, and recognition, and IDPs/IDPRs play diverse roles in modulation and control of their binding partners’ functions and in promoting the assembly of supramolecular complexes. The biological actions of IDPs/IDPRs, which frequently serve as major regulators of their binding partners, are controlled by extensive posttranslational modifications (PTMs), such as phosphorylation, acetylation, ubiquitination, and sumoylation,5 and by alternative splicing.8 In fact, many IDPs/IDPRs are known to contain multiple functional elements that contribute to their ability to be involved in interaction with, regulation of, and control by multiple structurally unrelated partners.9 Given the existence of multiple functions in a single disordered protein, and given that each functional element is typically relatively short, alternative splicing could readily generate sets of protein isoforms with highly diverse regulatory elements.8 The complexity of the disorder-based interactomes is further increased by the capacity of a single IDPR to bind to multiple partners, gaining very different structures in the bound state.10 IDPs can form highly stable complexes or be involved in signaling interactions where they undergo constant “bound–unbound” transitions, thus acting as dynamic and sensitive “on–off” switches. The ability of these proteins to return to highly flexible conformations after the completion of a particular function, and their predisposition to adopt different conformations depending on their environment, are unique physiological properties of IDPs that allow them to exert different functions in different cellular contexts according to a specific conformational state.5 Although the field of protein disorder has started from careful analysis of a very limited number of biologically active proteins without unique structures (which, for a long time, were taken as rare exceptions from the general “one sequence–one unique structure–one unique function” paradigm),1–4 applications of various disorder predictors to different proteomes revealed that IDPs are highly abundant in nature,11–16 and the overall amount of disorder in proteins increases from bacteria to archaea to eukaryota, with over half of all eukaryotic proteins predicted to contain extended IDPRs.11,12,15–17 One explanation for this trend is a change in the cellular requirements for certain protein functions, particularly cellular signaling. In support of this hypothesis, an analysis of a eukaryotic signal protein database indicated that the majority of known signal transduction proteins were predicted to contain significant regions of disorder.18 A detailed study focused on the intricate mechanisms of IDP regulation inside the cell was recently conducted by Gsponer et al.19 These authors grouped all the Saccharomyces cerevisiae proteins into three classes according to their predicted disorder propensities and evaluated the correlations between intrinsic disorder and the various regulation steps of protein synthesis and degradation.19 Although the transcriptional rates of mRNAs encoding IDPs and ordered proteins were comparable, IDP-encoding transcripts were generally less abundant than transcripts encoding ordered proteins because of increased decay rates of IDP mRNAs.19 Also, IDPs were found to be less abundant than ordered proteins because of lower rates of protein synthesis and shorter protein half-lives.19 Curiously, IDPs were shown to be substrates of twice as many kinases as ordered proteins. Furthermore, the vast majority of kinases whose substrates were IDPs were either regulated in a cell-cycle-dependent manner or activated upon exposure to specific stimuli or stress.19 Similar regulation trends were also found in proteomes of Schizosaccharomyces pombe and Homo sapiens,19 suggesting that both unicellular and multicellular organisms use evolutionarily conserved mechanisms to regulate the availability of their IDPs. This tight regulation is directly related to the major roles of IDPs/IDPRs in signaling, where it is crucial for a given protein to be available in appropriate amounts and not to be present longer than needed.19 It was also pointed out5 that although the abundance of many IDPs may be closely regulated, some disordered proteins could be present in cells in large amounts or/and for long periods of time, either due to specific PTMs or via interactions with other factors. These events could promote changes in cellular localization of IDPs or protect them from degradation.3,20–23 Taken together, these data highlight that the chaos seemingly associated with highly flexible and promiscuous IDPs/IDPRs is under tight control.24
Scientific Reports | 2013
Prerna Malaney; Ravi Ramesh Pathak; Bin Xue; Vladimir N. Uversky; Vrushank Davé
IDPs, while structurally poor, are functionally rich by virtue of their flexibility and modularity. However, how mutations in IDPs elicit diseases, remain elusive. Herein, we have identified tumor suppressor PTEN as an intrinsically disordered protein (IDP) and elucidated the molecular principles by which its intrinsically disordered region (IDR) at the carboxyl-terminus (C-tail) executes its functions. Post-translational modifications, conserved eukaryotic linear motifs and molecular recognition features present in the C-tail IDR enhance PTENs protein-protein interactions that are required for its myriad cellular functions. PTEN primary and secondary interactomes are also enriched in IDPs, most being cancer related, revealing that PTEN functions emanate from and are nucleated by the C-tail IDR, which form pliable network-hubs. Together, PTEN higher order functional networks operate via multiple IDP-IDP interactions facilitated by its C-tail IDR. Targeting PTEN IDR and its interaction hubs emerges as a new paradigm for treatment of PTEN related pathologies.
Cell Cycle | 2010
William D. Hardie; James S. Hagood; Vrushank Davé; Anne-Karina T. Perl; Jeffrey A. Whitsett; Thomas R. Korfhagen; Stephan W. Glasser
Pulmonary fibrosis complicates a number of disease processes and leads to substantial morbidity and mortality. Idiopathic pulmonary fibrosis (IPF) is perhaps the most pernicious and enigmatic form of the greater problem of lung fibrogenesis with a median survival of three years from diagnosis in affected patients. In this review, we will focus on the pathology of IPF as a model of pulmonary fibrotic processes, review possible cellular mechanisms, review current treatment approaches and review two transgenic mouse models of lung fibrosis to provide insight into processes that cause lung fibrosis. We will also summarize the potential utility of signaling pathway inhibitors as a future treatment in pulmonary fibrosis. Finally, we will present data demonstrating a minimal contribution of epithelial-mesenchymal transition in the development of fibrotic lesions in the transforming growth factor-alpha transgenic model of lung fibrosis.
Journal of Clinical Investigation | 2006
Vrushank Davé; Tawanna Childs; Yan Xu; Machiko Ikegami; Valérie Besnard; Yutaka Maeda; Susan E. Wert; Joel R. Neilson; Gerald R. Crabtree; Jeffrey A. Whitsett
Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.
Science Signaling | 2014
Rafael Pulido; Suzanne J. Baker; João T. Barata; Arkaitz Carracedo; Víctor J. Cid; Ian D. Chin-Sang; Vrushank Davé; Jeroen den Hertog; Peter N. Devreotes; Charis Eng; Frank B. Furnari; Maria Magdalena Georgescu; Arne Gericke; Benjamin D. Hopkins; Xeujun Jiang; Seung Rock Lee; Mathias Lösche; Prerna Malaney; Xavier Matias-Guiu; María Molina; Pier Paolo Pandolfi; Ramon Parsons; Paolo Pinton; Carmen Rivas; Rafael M. Rocha; Manuel Sánchez Rodríguez; Alonzo H. Ross; Manuel Serrano; Vuk Stambolic; Bangyan L. Stiles
With the discovery of an isoform based on an alternative translation start site, PTEN nomenclature needs an update. The tumor suppressor PTEN is a major brake for cell transformation, mainly due to its phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] phosphatase activity that directly counteracts the oncogenicity of phosphoinositide 3-kinase (PI3K). PTEN mutations are frequent in tumors and in the germ line of patients with tumor predisposition or with neurological or cognitive disorders, which makes the PTEN gene and protein a major focus of interest in current biomedical research. After almost two decades of intense investigation on the 403-residue-long PTEN protein, a previously uncharacterized form of PTEN has been discovered that contains 173 amino-terminal extra amino acids, as a result of an alternate translation initiation site. To facilitate research in the field and to avoid ambiguities in the naming and identification of PTEN amino acids from publications and databases, we propose here a unifying nomenclature and amino acid numbering for this longer form of PTEN.
BMC Genomics | 2010
Yan Xu; Minlu Zhang; Yanhua Wang; Pooja Kadambi; Vrushank Davé; Long J Lu; Jeffrey A. Whitsett
BackgroundPulmonary surfactant is required for lung function at birth and throughout life. Lung lipid and surfactant homeostasis requires regulation among multi-tiered processes, coordinating the synthesis of surfactant proteins and lipids, their assembly, trafficking, and storage in type II cells of the lung. The mechanisms regulating these interrelated processes are largely unknown.ResultsWe integrated mRNA microarray data with array independent knowledge using Gene Ontology (GO) similarity analysis, promoter motif searching, protein interaction and literature mining to elucidate genetic networks regulating lipid related biological processes in lung. A Transcription factor (TF) - target gene (TG) similarity matrix was generated by integrating data from different analytic methods. A scoring function was built to rank the likely TF-TG pairs. Using this strategy, we identified and verified critical components of a transcriptional network directing lipogenesis, lipid trafficking and surfactant homeostasis in the mouse lung.ConclusionsWithin the transcriptional network, SREBP, CEBPA, FOXA2, ETSF, GATA6 and IRF1 were identified as regulatory hubs displaying high connectivity. SREBP, FOXA2 and CEBPA together form a common core regulatory module that controls surfactant lipid homeostasis. The core module cooperates with other factors to regulate lipid metabolism and transport, cell growth and development, cell death and cell mediated immune response. Coordinated interactions of the TFs influence surfactant homeostasis and regulate lung function at birth.
Cellular and Molecular Life Sciences | 2017
Prerna Malaney; Vladimir N. Uversky; Vrushank Davé
Proteoforms are specific molecular forms of protein products arising from a single gene that possess different structures and different functions. Therefore, a single gene can produce a large repertoire of proteoforms by means of allelic variations (mutations, indels, SNPs), alternative splicing and other pre-translational mechanisms, post-translational modifications (PTMs), conformational dynamics, and functioning. Resulting proteoforms that have different sizes, alternative splicing patterns, sets of post-translational modifications, protein–protein interactions, and protein–ligand interactions, might dramatically increase the functionality of the encoded protein. Herein, we have interrogated the tumor suppressor PTEN for its proteoforms and find that this protein exists in multiple forms with distinct functions and sub-cellular localizations. Furthermore, the levels of each PTEN proteoform in a given cell may affect its biological function. Indeed, the paradigm of the continuum model of tumor suppression by PTEN can be better explained by the presence of a continuum of PTEN proteoforms, diversity, and levels of which are associated with pathological outcomes than simply by the different roles of mutations in the PTEN gene. Consequently, understanding the mechanisms underlying the dysregulation of PTEN proteoforms by several genomic and non-genomic mechanisms in cancer and other diseases is imperative. We have identified different PTEN proteoforms, which control various aspects of cellular function and grouped them into three categories of intrinsic, function-induced, and inducible proteoforms. A special emphasis is given to the inducible PTEN proteoforms that are produced due to alternative translational initiation. The novel finding that PTEN forms dimers with biological implications supports the notion that PTEN proteoform–proteoform interactions may play hitherto unknown roles in cellular homeostasis and in pathogenic settings, including cancer. These PTEN proteoforms with unique properties and functionalities offer potential novel therapeutic opportunities in the treatment of various cancers and other diseases.
Journal of Biological Chemistry | 2013
Ravi Ramesh Pathak; Aditya Grover; Prerna Malaney; Waise Quarni; Ashish Pandit; Diane S. Allen-Gipson; Vrushank Davé
Background: Leptin expression is induced in lung diseases and lung cancer, but the mechanism of leptin gene expression remains elusive. Results: Leptin mediates leptin and leptin receptor expression, setting up a feed-forward loop. Conclusion: DNA elements and intracellular signals activating leptin gene expression were identified. Significance: Mechanism of leptin/leptin receptor gene regulation will aid in targeting leptin signaling in lung pathologies. Elevated levels of systemic and pulmonary leptin are associated with diseases related to lung injury and lung cancer. However, the role of leptin in lung biology and pathology, including the mechanism of leptin gene expression in the pathogenesis of lung diseases, including lung cancer, remains elusive. Here, using conditional deletion of tumor suppressor gene Pten in the lung epithelium in vivo in transgenic mice and human PTEN-null lung epithelial cells, we identify the leptin-driven feed-forward signaling loop in the lung epithelial cells. Leptin-mediated leptin/leptin-receptor gene expression likely amplifies leptin signaling that may contribute to the pathogenesis and severity of lung diseases, resulting in poor clinical outcomes. Loss of Pten in the lung epithelial cells in vivo activated adipokine signaling and induced leptin synthesis as ascertained by genome-wide mRNA profiling and pathway analysis. Leptin gene transcription was mediated by binding of transcription factors NRF-1 and CCAAT/enhancer-binding protein δ (C/EBP) to the proximal promoter regions and STAT3 to the distal promoter regions as revealed by leptin promoter-mutation, chromatin immunoprecipitation, and gain- and loss-of-function studies in lung epithelial cells. Leptin treatment induced expression of the leptin/leptin receptor in the lung epithelial cells via activation of MEK/ERK, PI3K/AKT/mammalian target of rapamycin (mTOR), and JAK2/STAT3 signaling pathways. Expression of constitutively active MEK-1, AKT, and STAT3 proteins increased expression, and treatment with MEK, PI3K, AKT, and mTOR inhibitors decreased LEP expression, indicating that leptin via MAPK/ERK1/2, PI3K/AKT/mTOR, and JAK2/STAT3 pathways, in turn, further induces its own gene expression. Thus, targeted inhibition of the leptin-mediated feed-forward loop provides a novel rationale for pharmacotherapy of disease associated with lung injury and remodeling, including lung cancer.
Cellular Physiology and Biochemistry | 2014
Ravi Ramesh Pathak; Vrushank Davé
Assimilation and integration of “omics” technologies, including genomics, epigenomics, proteomics, and metabolomics has readily altered the landscape of medical research in the last decade. The vast and complex nature of omics data can only be interpreted by linking molecular information at the organismic level, forming the foundation of systems biology. Research in pulmonary biology/medicine has necessitated integration of omics, network, systems and computational biology data to differentially diagnose, interpret, and prognosticate pulmonary diseases, facilitating improvement in therapy and treatment modalities. This review describes how to leverage this emerging technology in understanding pulmonary diseases at the systems level -called a “systomic” approach. Considering the operational wholeness of cellular and organ systems, diseased genome, proteome, and the metabolome needs to be conceptualized at the systems level to understand disease pathogenesis and progression. Currently available omics technology and resources require a certain degree of training and proficiency in addition to dedicated hardware and applications, making them relatively less user friendly for the pulmonary biologist and clinicians. Herein, we discuss the various strategies, computational tools and approaches required to study pulmonary diseases at the systems level for biomedical scientists and clinical researchers.
Cell death discovery | 2017
Jaymin J. Kathiriya; Niyati Nakra; Jenna Nixon; Puja S Patel; Vijay Vaghasiya; Ahmed Alhassani; Zhi Tian; Diane S. Allen-Gipson; Vrushank Davé
Idiopathic pulmonary fibrosis (IPF) is characterized by lung remodeling arising from epithelial injury, aberrant fibroblast growth, and excessive deposition of extracellular matrix. Repeated epithelial injury elicits abnormal wound repair and lung remodeling, often associated with alveolar collapse and edema, leading to focal hypoxia. Here, we demonstrate that hypoxia is a physiological insult that contributes to pulmonary fibrosis (PF) and define its molecular roles in profibrotic activation of lung epithelial cells. Hypoxia increased transcription of profibrotic genes and altered the proteomic signatures of lung epithelial cells. Network analysis of the hypoxic epithelial proteome revealed a crosstalk between transforming growth factor-β1 and FAK1 (focal adhesion kinase-1) signaling, which regulated transcription of galectin-1, a profibrotic molecule. Galectin-1 physically interacted with and activated FAK1 in lung epithelial cells. We developed a novel model of exacerbated PF wherein hypoxia, as a secondary insult, caused PF in mice injured with subclinical levels of bleomycin. Hypoxia elevated expression of phosphorylated FAK1, galectin-1, and α-smooth muscle actin and reduced caspase-3 activation, suggesting aberrant injury repair. Galectin-1 inhibition caused apoptosis in the lung parenchyma and reduced FAK1 activation, preventing the development of hypoxia-induced PF. Galectin-1 inhibition also attenuated fibrosis-associated lung function decline. Further, galectin-1 transcript levels were increased in the lungs of IPF patients. In summary, we have identified a profibrotic role of galectin-1 in hypoxia signaling driving PF.