Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vu Thuy Khanh Le-Trilling is active.

Publication


Featured researches published by Vu Thuy Khanh Le-Trilling.


PLOS Pathogens | 2015

The Transcription and Translation Landscapes during Human Cytomegalovirus Infection Reveal Novel Host-Pathogen Interactions.

Osnat Tirosh; Yifat Cohen; Alina Shitrit; Odem Shani; Vu Thuy Khanh Le-Trilling; Mirko Trilling; Gilgi Friedlander; Marvin E. Tanenbaum; Noam Stern-Ginossar

Viruses are by definition fully dependent on the cellular translation machinery, and develop diverse mechanisms to co-opt this machinery for their own benefit. Unlike many viruses, human cytomegalovirus (HCMV) does suppress the host translation machinery, and the extent to which translation machinery contributes to the overall pattern of viral replication and pathogenesis remains elusive. Here, we combine RNA sequencing and ribosomal profiling analyses to systematically address this question. By simultaneously examining the changes in transcription and translation along HCMV infection, we uncover extensive transcriptional control that dominates the response to infection, but also diverse and dynamic translational regulation for subsets of host genes. We were also able to show that, at late time points in infection, translation of viral mRNAs is higher than that of cellular mRNAs. Lastly, integration of our translation measurements with recent measurements of protein abundance enabled comprehensive identification of dozens of host proteins that are targeted for degradation during HCMV infection. Since targeted degradation indicates a strong biological importance, this approach should be applicable for discovering central host functions during viral infection. Our work provides a framework for studying the contribution of transcription, translation and degradation during infection with any virus.


Scientific Reports | 2016

Broad and potent antiviral activity of the NAE inhibitor MLN4924.

Vu Thuy Khanh Le-Trilling; Dominik A. Megger; Benjamin Katschinski; Christine D. Landsberg; Meike U. Rückborn; Sha Tao; Adalbert Krawczyk; Wibke Bayer; Ingo Drexler; Matthias Tenbusch; Barbara Sitek; Mirko Trilling

In terms of infected human individuals, herpesviruses range among the most successful virus families. Subclinical herpesviral infections in healthy individuals contrast with life-threatening syndromes under immunocompromising and immunoimmature conditions. Based on our finding that cytomegaloviruses interact with Cullin Roc ubiquitin ligases (CRLs) in the context of interferon antagonism, we systematically assessed viral dependency on CRLs by utilizing the drug MLN4924. CRL activity is regulated through the conjugation of Cullins with the ubiquitin-like molecule Nedd8. By inhibiting the Nedd8-activating Enzyme (NAE), MLN4924 interferes with Nedd8 conjugation and CRL activity. MLN4924 exhibited pronounced antiviral activity against mouse and human cytomegalovirus, herpes simplex virus (HSV)- 1 (including multi-drug resistant clinical isolates), HSV-2, adeno and influenza viruses. Human cytomegalovirus genome amplification was blocked at nanomolar MLN4924 concentrations. Global proteome analyses revealed that MLN4924 blocks cytomegaloviral replication despite increased IE1 amounts. Expression of dominant negative Cullins assigned this IE regulation to defined Cullin molecules and phenocopied the antiviral effect of MLN4924.


Cell Reports | 2016

Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus

Tiziano Donnarumma; George R. Young; Julia Merkenschlager; Urszula Eksmond; Nadine Bongard; Stephen L. Nutt; Claude Boyer; Ulf Dittmer; Vu Thuy Khanh Le-Trilling; Mirko Trilling; Wibke Bayer; George Kassiotis

Summary CD4+ T cells develop distinct and often contrasting helper, regulatory, or cytotoxic activities. Typically a property of CD8+ T cells, granzyme-mediated cytotoxic T cell (CTL) potential is also exerted by CD4+ T cells. However, the conditions that induce CD4+ CTLs are not entirely understood. Using single-cell transcriptional profiling, we uncover a unique signature of Granzyme B (GzmB)+ CD4+ CTLs, which distinguishes them from other CD4+ T helper (Th) cells, including Th1 cells, and strongly contrasts with the follicular helper T (Tfh) cell signature. The balance between CD4+ CTL and Tfh differentiation heavily depends on the class of infecting virus and is jointly regulated by the Tfh-related transcription factors Bcl6 and Tcf7 (encoding TCF-1) and by the expression of the inhibitory receptors PD-1 and LAG3. This unique profile of CD4+ CTLs offers targets for their study, and its antagonism by the Tfh program separates CD4+ T cells with either helper or killer functions.


Cell Reports | 2016

HCMV vCXCL1 Binds Several Chemokine Receptors and Preferentially Attracts Neutrophils over NK Cells by Interacting with CXCR2

Rachel Yamin; Laura S.M. Lecker; Yiska Weisblum; Alon Vitenshtein; Vu Thuy Khanh Le-Trilling; Dana G. Wolf; Ofer Mandelboim

HCMV is a highly sophisticated virus that has developed various mechanisms for immune evasion and viral dissemination throughout the body (partially mediated by neutrophils). NK cells play an important role in elimination of HCMV-infected cells. Both neutrophils and NK cells utilize similar sets of chemokine receptors to traffic, to and from, various organs. However, the mechanisms by which HCMV attracts neutrophils and not NK cells are largely unknown. Here, we show a unique viral protein, vCXCL1, which targets three chemokine receptors: CXCR1 and CXCR2 expressed on neutrophils and CXCR1 and CX3CR1 expressed on NK cells. Although vCXCL1 attracted both cell types, neutrophils migrated faster and more efficiently than NK cells through the binding of CXCR2. Therefore, we propose that HCMV has developed vCXCL1 to orchestrate its rapid systemic dissemination through preferential attraction of neutrophils and uses alternative mechanisms to counteract the later attraction of NK cells.


Journal of Hepatology | 2016

MAPKAP kinase 2 regulates IL-10 expression and prevents formation of intrahepatic myeloid cell aggregates during cytomegalovirus infections

Christian Ehlting; Mirko Trilling; Christopher Tiedje; Vu Thuy Khanh Le-Trilling; Ute Albrecht; Stefanie Kluge; Albert Zimmermann; Dirk Graf; Matthias Gaestel; Hartmut Hengel; Dieter Häussinger; Johannes G. Bode

BACKGROUND & AIMS The kinase p38(MAPK) and its downstream target MAPKAP kinase (MK) 2 are critical regulators of inflammatory responses towards pathogens. To date, the relevance of MK2 for regulating IL-10 expression and other cytokine responses towards cytomegalovirus (CMV) infection and the impact of this pathway on viral replication in vitro and in vivo is unknown and the subject of this study. METHODS The effect of MK2, interferon-α receptor (IFNAR)1, tristetraprolin (TTP) and IL-10 on mouse (M)CMV virus titres, cytokine expression, signal transduction, transcript stability, liver enzymes release, immune cell recruitment and aggregation in response to MCMV infection were studied ex vivo in hepatocytes and macrophages, as well as in vivo. RESULTS MK2 is critical for MCMV-induced production of IL-10, IFN-α2 and 4, IFN-β, IL-6, and TNF-α but not for IFN-γ. The MCMV-induced IL-10 production requires activation of IFNAR1 and is further regulated by MK2 and TTP-dependent stabilization of IL-10 transcripts. MK2(-/-) mice are able to control acute MCMV replication, despite deregulated cytokine production. This may be related to the observation that MCMV-infected MK2(-/-) mice show enhanced formation of focal intrahepatic lymphocyte infiltrates resembling intrahepatic myeloid cell aggregates of T cell expansion (iMATEs), which were also observed in MCMV-infected IL-10(-/-) mice but are almost absent in MCMV-infected wild-type controls. CONCLUSIONS The data suggest that MK2 is critical for regulating cytokine responses towards acute MCMV infection, including that of IL-10 via IFNARI-mediated circuits. MCMV stimulates expression of MK2-dependent cytokines, in particular IL-10 and thereby prevents enhanced formation of intrahepatic iMATE-like cellular aggregates.


Tissue Antigens | 2015

Attack, parry and riposte: molecular fencing between the innate immune system and human herpesviruses.

Vu Thuy Khanh Le-Trilling; Mirko Trilling

Once individuals acquire one of the eight human-pathogenic herpesviruses, the upcoming relationship is predefined to last lifelong. Despite the fact that acute phases of herpesviral replication are usually confined and controlled by a concerted action of all branches of the healthy immune system, sterile immunity is never reached. To accomplish this, herpesviruses evolved the unique ability to outlast episodes of efficient immunity in a dormant state called latency and a remarkable array of immune antagonists which counteract most (if not all) relevant aspects of intrinsic, innate and adaptive immune responses. Certain psychological and physiological conditions (such as stress, immuno-suppression or pregnancy) predispose for viral reactivation which can lead to recurrent disease and virus spread. One important pillar of immunity is the innate immune system. The leading cytokines of the innate immune response are interferons (IFN). IFNs reinforce intrinsic immunity, induce a cell-intrinsic antiviral state and recruit and orchestrate adaptive immunity. Consistently, individuals lacking a functional IFN system suffer from otherwise harmless opportunists and live-attenuated vaccines. The selective pressure elicited by IFNs drove herpesviruses to evolve numerous IFN antagonistic gene products. A molecular in-depth understanding of (herpes-) viral IFN antagonists might allow the design of novel antiviral drugs which reconstitute IFN responses by blocking the antagonistic function and thereby help the host to help himself. Additionally, virus mutants lacking immune evasins constitute promising candidates for vaccine viruses. Here we summarize the current knowledge on IFN antagonistic strategies of the eight human herpesviruses and try to decipher common strategies.


Frontiers in Immunology | 2017

Deciphering of the Human Interferon-regulated Proteome by Mass Spectrometry-based Quantitative Analysis Reveals Extent and Dynamics of Protein Induction and Repression

Dominik A. Megger; Jos Philipp; Vu Thuy Khanh Le-Trilling; Barbara Sitek; Mirko Trilling

Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.


Journal of Virology | 2015

The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products

Stephanie Rattay; Mirko Trilling; Dominik A. Megger; Barbara Sitek; Helmut E. Meyer; Hartmut Hengel; Vu Thuy Khanh Le-Trilling

ABSTRACT Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. IMPORTANCE Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation.


PLOS ONE | 2017

Mouse newborn cells allow highly productive mouse cytomegalovirus replication, constituting a novel convenient primary cell culture system

Vu Thuy Khanh Le-Trilling; Mirko Trilling

Mammalian cell culture is indispensable for most aspects of current biomedical research. Immortalized cell lines are very convenient, but transforming principles (e.g. oncogenic viruses or their oncogenes) can heavily influence the experimental outcome. Primary cells do not share this apparent disadvantage but are more laborious to generate. Certain viruses (e.g. mouse cytomegalovirus) do not replicate efficiently in most transformed cell lines. In the past, such viruses have been routinely propagated on primary mouse embryonic fibroblasts (MEF) established around day 17 (d17) of gestation. According to new regulations of the European Union, experiments using gravid mammals and/or their embryos in the last trimester (>d14 in the case of mice) of gestation do require explicit permission of the local authorities responsible for animal care and use. Applying for such permission is time-consuming and often inflexible. Embryonic fibroblasts could also be produced at earlier time points of pregnancy from younger and smaller embryos. Obviously, this approach consumes more pregnant mice and embryos. Newborn mice are larger thus yielding more cells per sacrificed animal and the new Directive (2010/63/EU) excludes the killing of animals solely for the use of their organs or tissues. We established a convenient protocol to generate adherent mouse newborn cells (MNC). A direct comparison of MNC with MEF revealed that MNC fully recapitulate all tested aspects of a broad panel of virological parameters (plaque size, final titers, viral replication kinetics, viral gene expression, drug and interferon susceptibility as well as species specificity). The herein described approach allows researchers the legal use of primary cells and contributes to the 3R (replace, reduce, refine) guiding principles—especially the ‘reduce’ aspect—for the use of animals in scientific research. Additionally, it offers the option to directly compare in vitro and in vivo experiments when MNC are generated from littermates of animals included in the in vivo experiments.


Journal of Virology | 2018

STAT2-Dependent Immune Responses Ensure Host Survival despite the Presence of a Potent Viral Antagonist

Vu Thuy Khanh Le-Trilling; Kerstin Wohlgemuth; Meike U. Rückborn; Andreja Jagnjic; Fabienne Maaßen; Lejla Timmer; Benjamin Katschinski; Mirko Trilling

ABSTRACT A pathogen encounter induces interferons, which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, the host and pathogens are situated in a continuous arms race which shapes host evolution toward optimized immune responses and the pathogens toward enhanced immune-evasive properties. Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2, which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo. In contrast to wild-type (wt) MCMV, ΔM27 mutant MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g., liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection. Taken together, the results of our study reveal the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary standoff situation with fatal consequences when the equilibrium is disturbed. IMPORTANCE The host limits viral replication by the use of interferons (IFNs), which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g., cytomegaloviruses, Zika virus, dengue virus, and several paramyxoviruses). We analyzed infections caused by MCMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate its importance for the host and the virus in vitro and in vivo. The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo. Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus.

Collaboration


Dive into the Vu Thuy Khanh Le-Trilling's collaboration.

Top Co-Authors

Avatar

Mirko Trilling

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wibke Bayer

Ruhr University Bochum

View shared research outputs
Top Co-Authors

Avatar

Dana G. Wolf

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Ofer Mandelboim

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Rachel Yamin

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge