Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vundavalli V. Murty is active.

Publication


Featured researches published by Vundavalli V. Murty.


Nature | 2001

MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells.

Loren Michel; Vasco Liberal; Anupam Chatterjee; Regina Kirchwegger; Boris Pasche; William L. Gerald; Max Dobles; Peter K. Sorger; Vundavalli V. Murty; Robert Benezra

The mitotic checkpoint protein hsMad2 is required to arrest cells in mitosis when chromosomes are unattached to the mitotic spindle. The presence of a single, lagging chromosome is sufficient to activate the checkpoint, producing a delay at the metaphase–anaphase transition until the last spindle attachment is made. Complete loss of the mitotic checkpoint results in embryonic lethality owing to chromosome mis-segregation in various organisms. Whether partial loss of checkpoint control leads to more subtle rates of chromosome instability compatible with cell viability remains unknown. Here we report that deletion of one MAD2 allele results in a defective mitotic checkpoint in both human cancer cells and murine primary embryonic fibroblasts. Checkpoint-defective cells show premature sister-chromatid separation in the presence of spindle inhibitors and an elevated rate of chromosome mis-segregation events in the absence of these agents. Furthermore, Mad2+/- mice develop lung tumours at high rates after long latencies, implicating defects in the mitotic checkpoint in tumorigenesis.


Nature Genetics | 2008

Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation

Kristi Kerkel; Alexandra Spadola; Eric Yuan; Jolanta Kosek; Le Jiang; Eldad A. Hod; Kerry Li; Vundavalli V. Murty; Nicole Schupf; Eric Vilain; Mitzi Morris; Fatemeh Haghighi; Benjamin Tycko

Allele-specific DNA methylation (ASM) is a hallmark of imprinted genes, but ASM in the larger nonimprinted fraction of the genome is less well characterized. Using methylation-sensitive SNP analysis (MSNP), we surveyed the human genome at 50K and 250K resolution, identifying ASM as recurrent genotype call conversions from heterozygosity to homozygosity when genomic DNAs were predigested with the methylation-sensitive restriction enzyme HpaII. Using independent assays, we confirmed ASM at 16 SNP-tagged loci distributed across various chromosomes. At 12 of these loci (75%), the ASM tracked strongly with the sequence of adjacent SNPs. Further analysis showed allele-specific mRNA expression at two loci from this methylation-based screen—the vanin and CYP2A6-CYP2A7 gene clusters—both implicated in traits of medical importance. This recurrent phenomenon of sequence-dependent ASM has practical implications for mapping and interpreting associations of noncoding SNPs and haplotypes with human phenotypes.


Nature Genetics | 2008

Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair

Lao H. Saal; Sofia K. Gruvberger-Saal; Camilla Persson; Kristina Lövgren; Johan Staaf; Göran Jönsson; Maira M. Pires; Matthew Maurer; Karolina Holm; Susan Koujak; Shivakumar Subramaniyam; Johan Vallon-Christersson; Haökan Olsson; Tao Su; Lorenzo Memeo; Thomas Ludwig; Stephen P. Ethier; Morten Krogh; Matthias Szabolcs; Vundavalli V. Murty; Jorma Isola; Hanina Hibshoosh; Ramon Parsons; Åke Borg

Basal-like breast cancer (BBC) is a subtype of breast cancer with poor prognosis. Inherited mutations of BRCA1, a cancer susceptibility gene involved in double-strand DNA break (DSB) repair, lead to breast cancers that are nearly always of the BBC subtype; however, the precise molecular lesions and oncogenic consequences of BRCA1 dysfunction are poorly understood. Here we show that heterozygous inactivation of the tumor suppressor gene Pten leads to the formation of basal-like mammary tumors in mice, and that loss of PTEN expression is significantly associated with the BBC subtype in human sporadic and BRCA1-associated hereditary breast cancers. In addition, we identify frequent gross PTEN mutations, involving intragenic chromosome breaks, inversions, deletions and micro copy number aberrations, specifically in BRCA1-deficient tumors. These data provide an example of a specific and recurrent oncogenic consequence of BRCA1-dependent dysfunction in DNA repair and provide insight into the pathogenesis of BBC with therapeutic implications. These findings also argue that obtaining an accurate census of genes mutated in cancer will require a systematic examination for gross gene rearrangements, particularly in tumors with deficient DSB repair.


Nature | 2014

Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts

Aruna Kode; John S. Manavalan; Ioanna Mosialou; Govind Bhagat; Chozha V. Rathinam; Na Luo; Hossein Khiabanian; Albert Lee; Vundavalli V. Murty; Richard A. Friedman; Andrea Brum; David Park; Naomi Galili; Siddhartha Mukherjee; Julie Teruya-Feldstein; Azra Raza; Raul Rabadan; Ellin Berman; Stavroula Kousteni

Cells of the osteoblast lineage affect the homing and the number of long-term repopulating haematopoietic stem cells, haematopoietic stem cell mobilization and lineage determination and B cell lymphopoiesis. Osteoblasts were recently implicated in pre-leukaemic conditions in mice. However, a single genetic change in osteoblasts that can induce leukaemogenesis has not been shown. Here we show that an activating mutation of β-catenin in mouse osteoblasts alters the differentiation potential of myeloid and lymphoid progenitors leading to development of acute myeloid leukaemia with common chromosomal aberrations and cell autonomous progression. Activated β-catenin stimulates expression of the Notch ligand jagged 1 in osteoblasts. Subsequent activation of Notch signalling in haematopoietic stem cell progenitors induces the malignant changes. Genetic or pharmacological inhibition of Notch signalling ameliorates acute myeloid leukaemia and demonstrates the pathogenic role of the Notch pathway. In 38% of patients with myelodysplastic syndromes or acute myeloid leukaemia, increased β-catenin signalling and nuclear accumulation was identified in osteoblasts and these patients showed increased Notch signalling in haematopoietic cells. These findings demonstrate that genetic alterations in osteoblasts can induce acute myeloid leukaemia, identify molecular signals leading to this transformation and suggest a potential novel pharmacotherapeutic approach to acute myeloid leukaemia.


Molecular Cancer | 2003

Frequent Promoter Methylation of CDH1, DAPK, RARB, and HIC1 Genes in Carcinoma of Cervix Uteri: Its Relationship to Clinical Outcome

Gopeshwar Narayan; Hugo Arias-Pulido; Sanjay Koul; Hernan Vargas; Fang F. Zhang; Jeannine A. Villella; Achim Schneider; Mary Beth Terry; Mahesh Mansukhani; Vundavalli V. Murty

BackgroundCervical cancer (CC), a leading cause of cancer-related deaths in women worldwide, has been causally linked to genital human papillomavirus (HPV) infection. Although a host of genetic alterations have been identified, molecular basis of CC development is still poorly understood.ResultsWe examined the role of promoter hypermethylation, an epigenetic alteration that is associated with the silencing tumor suppressor genes in human cancer, by studying 16 gene promoters in 90 CC cases. We found a high frequency of promoter methylation in CDH1, DAPK, RARB, and HIC1 genes. Correlation of promoter methylation with clinical characteristics and other genetic changes revealed the following: a) overall promoter methylation was higher in more advanced stage of the disease, b) promoter methylation of RARB and BRCA1 predicted worse prognosis, and c) the HIC1 promoter methylation was frequently seen in association with microsatellite instability. Promoter methylation was associated with gene silencing in CC cell lines. Treatment with methylation or histone deacetylation-inhibiting agents resulted in profound reactivation of gene expression.ConclusionsThese results may have implications in understanding the underlying epigenetic mechanisms in CC development, provide prognostic indicators, and identify important gene targets for treatment.


Blood | 2009

The NF-κB negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas

Urban Novak; Andrea Rinaldi; Ivo Kwee; Subhadra V. Nandula; Paola M. V. Rancoita; Mara Compagno; Michaela Cerri; Davide Rossi; Vundavalli V. Murty; Emanuele Zucca; Gianluca Gaidano; Riccardo Dalla-Favera; Laura Pasqualucci; Govind Bhagat; Francesco Bertoni

Unique and shared cytogenetic abnormalities have been documented for marginal zone lymphomas (MZLs) arising at different sites. Recently, homozygous deletions of the chromosomal band 6q23, involving the tumor necrosis factor alpha-induced protein 3 (TNFAIP3, A20) gene, a negative regulator of NF-kappaB, were described in ocular adnexal MZL, suggesting a role for A20 as a tumor suppressor in this disease. Here, we investigated inactivation of A20 by DNA mutations or deletions in a panel of extranodal MZL (EMZL), nodal MZL (NMZL), and splenic MZL (SMZL). Inactivating mutations encoding truncated A20 proteins were identified in 6 (19%) of 32 MZLs, including 2 (18%) of 11 EMZLs, 3 (33%) of 9 NMZLs, and 1 (8%) of 12 SMZLs. Two additional unmutated nonsplenic MZLs also showed monoallelic or biallelic A20 deletions by fluorescent in situ hybridization (FISH) and/or SNP-arrays. Thus, A20 inactivation by either somatic mutation and/or deletion represents a common genetic aberration across all MZL subtypes, which may contribute to lymphomagenesis by inducing constitutive NF-kappaB activation.


Genes, Chromosomes and Cancer | 2008

Identification of copy number gain and overexpressed genes on chromosome arm 20q by an integrative genomic approach in cervical cancer: potential role in progression.

Luigi Scotto; Gopeshwar Narayan; Subhadra V. Nandula; Hugo Arias-Pulido; Shivakumar Subramaniyam; Achim Schneider; Andreas M. Kaufmann; Jason D. Wright; Bhavana Pothuri; Mahesh Mansukhani; Vundavalli V. Murty

Recurrent karyotypic abnormalities are a characteristic feature of cervical cancer (CC) cells, which may result in deregulated expression of important genes that contribute to tumor initiation and progression. To examine the role of gain of the long arm of chromosome 20 (20q), one of the common chromosomal gains in CC, we evaluated CC at various stages of progression using single nucleotide polymorphism (SNP) array, gene expression profiling, and fluorescence in situ hybridization (FISH) analyses. This analysis revealed copy number increase (CNI) of 20q in >50% of invasive CC and identified two focal amplicons at 20q11.2 and 20q13.13 in a subset of tumors. We further demonstrate that the acquisition of 20q gain occurs at an early stage in CC development and the high‐grade squamous intraepithelial lesions (HSIL) that exhibit 20q CNI are associated (P = 0.05) with persistence or progression to invasive cancer. We identified a total of 26 overexpressed genes as consequence of 20q gain (N = 14), as targets of amplicon 1 (N = 9; two genes also commonly expressed with 20q gain) and amplicon 2 (N = 6; one gene also commonly expressed with 20q gain). These include a number of functionally important genes in cell cycle regulation (E2F1, TPX2, KIF3B, PIGT, and B4GALT5), nuclear function (CSEL1), viral replication (PSMA7 and LAMA5), methylation and chromatin remodeling (ASXL1, AHCY, and C20orf20), and transcription regulation (TCEA2). Our findings implicate a role for these genes in CC tumorigenesis, represent an important step toward the development of clinically significant biomarkers, and form a framework for testing as molecular therapeutic targets.


Cancer Research | 2004

Promoter Hypermethylation of FANCF Disruption of Fanconi Anemia-BRCA Pathway in Cervical Cancer

Gopeshwar Narayan; Hugo Arias-Pulido; Subhadra V. Nandula; Katia Basso; Dorcas D. Sugirtharaj; Hernan Vargas; Mahesh Mansukhani; Jeannine A. Villella; Larissa A. Meyer; Achim Schneider; Lutz Gissmann; Matthias Dürst; Bhavana Pothuri; Vundavalli V. Murty

Patients with advanced stage invasive cervical cancer (CC) exhibit highly complex genomic alterations and respond poorly to conventional treatment protocols. In our efforts to understand the molecular genetic basis of CC, we examined the role of Fanconi Anemia (FA)-BRCA pathway. Here, we show that FANCF gene is disrupted by either promoter hypermethylation and/or deregulated gene expression in a majority of CC. Inhibition of DNA methylation and histone deacetylases induces FANCF gene re-expression in CC cell lines. FANCF-deregulated CC cell lines also exhibit a chromosomal hypersensitivity phenotype after exposure to an alkylating agent, a characteristic of FA patients. We also show the involvement of BRCA1 gene by promoter hypermethylation or down-regulated expression in a small subset of CC patients. Thus, we have found inactivation of genes in the FA-BRCA pathway by epigenetic alterations in a high proportion of CC patients, suggesting a major role for this pathway in the development of cervical cancer. Thus, these results have important implications in understanding the molecular basis of CC tumorigenesis and clinical management in designing targeted experimental therapeutic protocols.


Journal of Clinical Investigation | 2008

The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers

Enrique Zudaire; Natalia Cuesta; Vundavalli V. Murty; Karen Woodson; Lisa Adams; Nieves González; Alfredo Martínez; Gopeshwar Narayan; Ilan Kirsch; Wilbur A. Franklin; Fred R. Hirsch; Michael J. Birrer; Frank Cuttitta

The aryl hydrocarbon receptor repressor (AHRR) is a bHLH/Per-ARNT-Sim transcription factor located in a region of chromosome 5 (5p15.3) that has been proposed to contain one or more tumor suppressor genes. We report here consistent downregulation of AHRR mRNA in human malignant tissue from different anatomical origins, including colon, breast, lung, stomach, cervix, and ovary, and demonstrate DNA hypermethylation as the regulatory mechanism of AHRR gene silencing. Knockdown of AHRR gene expression in a human lung cancer cell line using siRNA significantly enhanced in vitro anchorage-dependent and -independent cell growth as well as cell growth after transplantation into immunocompromised mice. In addition, knockdown of AHRR in non-clonable normal human mammary epithelial cells enabled them to grow in an anchorage-independent manner. Further, downregulation of AHRR expression in the human lung cancer cell line conferred resistance to apoptotic signals and enhanced motility and invasion in vitro and angiogenic potential in vivo. Ectopic expression of AHRR in tumor cells resulted in diminished anchorage-dependent and -independent cell growth and reduced angiogenic potential. These results therefore demonstrate that AHRR is a putative new tumor suppressor gene in multiple types of human cancers.


Nature Genetics | 2013

A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia

Sohela Shah; Kasmintan A. Schrader; Esmé Waanders; Andrew E. Timms; Joseph Vijai; Cornelius Miething; Jeremy Wechsler; Jun Yang; James Hayes; Robert J. Klein; Jinghui Zhang; Lei Wei; Gang Wu; Michael Rusch; Panduka Nagahawatte; Jing Ma; Shann Ching Chen; Guangchun Song; Jinjun Cheng; Paul A. Meyers; Deepa Bhojwani; Suresh C. Jhanwar; P. Maslak; Martin Fleisher; Jason Littman; Lily Offit; Rohini Rau-Murthy; Megan Harlan Fleischut; Marina Corines; Rajmohan Murali

Somatic alterations of the lymphoid transcription factor gene PAX5 (also known as BSAP) are a hallmark of B cell precursor acute lymphoblastic leukemia (B-ALL), but inherited mutations of PAX5 have not previously been described. Here we report a new heterozygous germline variant, c.547G>A (p.Gly183Ser), affecting the octapeptide domain of PAX5 that was found to segregate with disease in two unrelated kindreds with autosomal dominant B-ALL. Leukemic cells from all affected individuals in both families exhibited 9p deletion, with loss of heterozygosity and retention of the mutant PAX5 allele at 9p13. Two additional sporadic ALL cases with 9p loss harbored somatic PAX5 substitutions affecting Gly183. Functional and gene expression analysis of the PAX5 mutation demonstrated that it had significantly reduced transcriptional activity. These data extend the role of PAX5 alterations in the pathogenesis of pre-B cell ALL and implicate PAX5 in a new syndrome of susceptibility to pre-B cell neoplasia.

Collaboration


Dive into the Vundavalli V. Murty's collaboration.

Top Co-Authors

Avatar

Govind Bhagat

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mahesh Mansukhani

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Bachir Alobeid

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. S. K. Chaganti

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge