Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vy Lam is active.

Publication


Featured researches published by Vy Lam.


Nature | 2015

Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract.

Sushma Kommineni; Daniel J. Bretl; Vy Lam; Rajrupa Chakraborty; Michael A. Hayward; Pippa Simpson; Yumei Cao; Pavlos Bousounis; Christopher J. Kristich; Nita H. Salzman

Enterococcus faecalis is both a common commensal of the human gastrointestinal tract and a leading cause of hospital-acquired infections. Systemic infections with multidrug-resistant enterococci occur subsequent to gastrointestinal colonization. Preventing colonization by multidrug-resistant E. faecalis could therefore be a valuable approach towards limiting infection. However, little is known about the mechanisms E. faecalis uses to colonize and compete for stable gastrointestinal niches. Pheromone-responsive conjugative plasmids encoding bacteriocins are common among enterococcal strains and could modulate niche competition among enterococci or between enterococci and the intestinal microbiota. We developed a model of colonization of the mouse gut with E. faecalis, without disrupting the microbiota, to evaluate the role of the conjugative plasmid pPD1 expressing bacteriocin 21 (ref. 4) in enterococcal colonization. Here we show that E. faecalis harbouring pPD1 replaces indigenous enterococci and outcompetes E. faecalis lacking pPD1. Furthermore, in the intestine, pPD1 is transferred to other E. faecalis strains by conjugation, enhancing their survival. Colonization with an E. faecalis strain carrying a conjugation-defective pPD1 mutant subsequently resulted in clearance of vancomycin-resistant enterococci, without plasmid transfer. Therefore, bacteriocin expression by commensal bacteria can influence niche competition in the gastrointestinal tract, and bacteriocins, delivered by commensals that occupy a precise intestinal bacterial niche, may be an effective therapeutic approach to specifically eliminate intestinal colonization by multidrug-resistant bacteria, without profound disruption of the indigenous microbiota.


The FASEB Journal | 2012

Intestinal microbiota determine severity of myocardial infarction in rats

Vy Lam; Jidong Su; Stacy Koprowski; Anna Hsu; James S. Tweddell; Parvaneh Rafiee; Garrett J. Gross; Nita H. Salzman; John E. Baker

Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic‐induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 μg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin‐suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 μg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof‐of‐concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.—Lam, V., Su, J., Koprowski, S., Hsu, A., Tweddell, J. S., Rafiee, P., Gross, G. J., Salzman, N. H., Baker, J. E. Intestinal microbiota determine severity of myocardial infarction in rats. FASEB J. 26, 1727‐1735 (2012). www.fasebj.org


Biochemical and Biophysical Research Communications | 2008

Regulation of ENaC expression at the cell surface by Rab11.

Alexey V. Karpushev; Vladislav Levchenko; Tengis S. Pavlov; Vy Lam; Kalyan C. Vinnakota; Alain Vandewalle; Tetsuro Wakatsuki; Alexander Staruschenko

The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption. Coexpression of Rab11a and Rab3a small G proteins with ENaC results in a significant increase in channel activity. In contrast, coexpression of Rab5, Rab27a, and Arf-1 had no effect or slightly decreased ENaC activity. Inhibition of MEK with PD98059, Rho-kinase with Y27632 or PI3-kinase with LY294002 had no effect on ENaC activity in Rab11a-transfected CHO cells. Fluorescence imaging methods demonstrate that Rab11a colocalized with ENaC. Rab11a increases ENaC activity in an additive manner with dominant-negative dynamin, which is a GTPase responsible for endocytosis. Brefeldin A, an inhibitor of intracellular protein translocation, blocked the stimulatory action of Rab11a on ENaC activity. We conclude that ENaC channels, present on the apical plasma membrane, are being exchanged with channels from the intracellular pool in a Rab11-dependent manner.


Radiation Research | 2012

Intestinal Microbiota as Novel Biomarkers of Prior Radiation Exposure

Vy Lam; John E. Moulder; Nita H. Salzman; Eric A. Dubinsky; Gary L. Andersen; John E. Baker

There is an urgent need for rapid, accurate, and sensitive diagnostic platforms to confirm exposure to radiation and estimate the dose absorbed by individuals subjected to acts of radiological terrorism, nuclear power plant accidents, or nuclear warfare. Clinical symptoms and physical dosimeters, even when available, do not provide adequate diagnostic information to triage and treat life-threatening radiation injuries. We hypothesized that intestinal microbiota act as novel biomarkers of prior radiation exposure. Adult male Wistar rats (n = 5/group) received single or multiple fraction total-body irradiation of 10.0 Gy and 18.0 Gy, respectively. Fresh fecal pellets were obtained from each rat prior to (day 0) and at days 4, 11, and 21 post-irradiation. Fecal microbiota composition was determined using microarray and quantitative PCR (polymerase chain reaction) analyses. The radiation exposure biomarkers consisted of increased 16S rRNA levels of 12 members of the Bacteroidales, Lactobacillaceae, and Streptococcaceae after radiation exposure, unchanged levels of 98 Clostridiaceae and Peptostreptococcaceae, and decreased levels of 47 separate Clostridiaceae members; these biomarkers are present in human and rat feces. As a result of the ubiquity of these biomarkers, this biomarker technique is non-invasive; microbiota provide a sustained level of reporting signals that are increased several-fold following exposure to radiation, and intestinal microbiota that are unaffected by radiation serve as internal controls. We conclude that intestinal microbiota serve as novel biomarkers of prior radiation exposure, and may be able to complement conventional chromosome aberrational analysis to significantly enhance biological dose assessments.


Radiation Research | 2013

Cardiac Injury after 10 Gy Total Body Irradiation: Indirect Role of Effects on Abdominal Organs

Marek Lenarczyk; Vy Lam; Eric S. Jensen; Brian L. Fish; Jidong Su; Stacy Koprowski; Richard A. Komorowski; Leanne Harmann; Raymond Q. Migrino; X. Allen Li; J.W. Hopewell; John E. Moulder; John E. Baker

The objective of this study was to determine whether radiation-induced injury to the heart after 10 Gy total body irradiation (TBI) is direct or indirect. Young male WAG/RijCmcr rats received a 10 Gy single dose using TBI, upper hemi-body (UHB) irradiation, lower hemi-body (LHB) irradiation, TBI with the kidneys shielded or LHB irradiation with the intestines shielded. Age-matched, sham-irradiated rats served as controls. The lipid profile, kidney injury, heart and liver morphology and cardiac function were determined up to 120 days after irradiation. LHB, but not UHB irradiation, increased the risk factors for cardiac disease as well as the occurrence of cardiac and kidney injury in a way that was quantitatively and qualitatively similar to that observed after TBI. Shielding of the kidneys prevented the increases in risk factors for cardiac disease. Shielding of the intestines did not prevent the increases in risk factors for cardiac disease. There was no histological evidence of liver injury 120 days after irradiation. Injury to the heart from irradiation appears to be indirect, supporting the notion that injury to abdominal organs, principally the kidneys, is responsible for the increased risk factors for and the occurrence of cardiac disease after TBI and LHB irradiation.


Tissue Engineering Part C-methods | 2009

High-Throughput Measurements of Hydrogel Tissue Construct Mechanics

Juan Pablo Marquez; Wesley R. Legant; Vy Lam; Amy E. Cayemberg; Elliot L. Elson; Tetsuro Wakatsuki

Engineered tissues represent a natural environment for studying cell physiology, mechanics, and function. Cellular interactions with the extracellular matrix proteins are important determinants of cell physiology and tissue mechanics. Dysregulation of these parameters can result in diseases such as cardiac fibrosis and atherosclerosis. In this report we present a novel system to produce hydrogel tissue constructs (HTCs) and to characterize their mechanical properties. HTCs are grown in custom chambers and a robotic system is used to indent them and measure the resulting forces. Force measurements are then used to estimate HTC pretension (cellular contractility). Pretension was reduced in a dose-dependent manner by cytochalasin D (CD) treatment; the highest concentration (2microM) resulted in 10-fold decrease. On the other hand, treatment with fetal bovine serum (20%) resulted in approximately threefold increase in pretension. Excellent repeatability and precision were observed in measurements from replicate HTCs. The coefficient of statistical variance of quantified pretension ranged from 7% to 15% (n=4). Due to the small size (4x4x0.8mm) of the HTCs, this system of profiling HTC mechanics can readily be used in high-throughput applications. In particular, it can be used for screening chemical libraries in search of drugs that can alter tissue mechanics.


JCI insight | 2016

Paneth cell defects in Crohn’s disease patients promote dysbiosis

Ta-Chiang Liu; Bhaskar Gurram; Megan T. Baldridge; Richard D. Head; Vy Lam; Chengwei Luo; Yumei Cao; Pippa Simpson; Michael A. Hayward; Mary L. Holtz; Pavlos Bousounis; Joshua D. Noe; Diana Lerner; Jose Cabrera; Vincent Biank; Michael Stephens; Curtis Huttenhower; Dermot P. McGovern; Ramnik J. Xavier; Thaddeus S. Stappenbeck; Nita H. Salzman

BACKGROUND Paneth cell dysfunction has been implicated in a subset of Crohns disease (CD) patients. We previously stratified clinical outcomes of CD patients by using Paneth cell phenotypes, which we defined by the intracellular distribution of antimicrobial proteins. Animal studies suggest that Paneth cells shape the intestinal microbiome. However, it is unclear whether Paneth cell phenotypes alter the microbiome complexity in CD subjects. Therefore, we analyzed the correlation of Paneth cell phenotypes with mucosal microbiome composition and ileal RNA expression in pediatric CD and noninflammatory bowel disease (non-IBD) patients. METHODS Pediatric CD (n = 44) and non-IBD (n = 62) patients aged 4 to 18 were recruited prior to routine endoscopic biopsy. Ileal mucosal samples were analyzed for Paneth cell phenotypes, mucosal microbiome composition, and RNA transcriptome. RESULTS The prevalence of abnormal Paneth cells was higher in pediatric versus adult CD cohorts. For pediatric CD patients, those with abnormal Paneth cells showed significant changes in their ileal mucosal microbiome, highlighted by reduced protective microbes and enriched proinflammatory microbes. Ileal transcriptome profiles showed reduced transcripts for genes that control oxidative phosphorylation in CD patients with abnormal Paneth cells. These transcriptional changes in turn were correlated with specific microbiome alterations. In non-IBD patients, a subset contained abnormal Paneth cells. However, this subset was not associated with alterations in the microbiome or host transcriptome. CONCLUSION Paneth cell abnormalities in human subjects are associated with mucosal dysbiosis in the context of CD, and these changes are associated with alterations in oxidative phosphorylation, potentially in a feedback loop. FUNDING The research was funded by Helmsley Charitable Trust (to T.S. Stappenbeck, R.J. Xavier, and D.P.B. McGovern), Crohns and Colitis Foundation of America (to N.H. Salzman, T.S. Stappenbeck, R.J. Xavier, and C. Huttenhower), and Doris Duke Charitable Foundation grant 2014103 (to T.C. Liu).


PLOS ONE | 2016

Intestinal Microbial Metabolites Are Linked to Severity of Myocardial Infarction in Rats

Vy Lam; Jidong Su; Anna Hsu; Garrett J. Gross; Nita H. Salzman; John E. Baker

Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host’s metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 μM), Src kinase (PP1, 20 μM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 μM), p38 MAPK (SB203580, 10 μM), or KATP channels (glibenclamide, 3 μM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in untreated rats. This study links gut microbiota metabolites to severity of myocardial infarction and may provide future opportunities for novel diagnostic tests and interventions for the prevention of cardiovascular disease.


Journal of Biomolecular Screening | 2011

Hydrogel Tissue Construct-Based High-Content Compound Screening

Vy Lam; Tetsuro Wakatsuki

Current pharmaceutical compound screening systems rely on cell-based assays to identify therapeutic candidates and potential toxicities. However, cells grown on 2D substrata or in suspension do not exhibit the mechanical or physiological properties of cells in vivo. To address this limitation, the authors developed an in vitro, high-throughput, 3D hydrogel tissue construct (HTC)–based assay system to quantify cell and tissue mechanical properties and multiple parameters of physiology. HTC mechanics was quantified using an automated device, and physiological status was assessed using spectroscopy-based indicators that were read on microplate readers. To demonstrate the application of this system, the authors screened 4 test compounds—rotenone (ROT), cytochalasin D (CD), 2,4-dinitrophenol (DNP), and Rho kinase inhibitor (H-1152)—for their ability to modulate HTC contractility without affecting actin integrity, mitochondrial membrane potential (MMP), or viability. All 4 compounds dose-dependently reduced HTC contractility. However, ROT was toxic, DNP dissipated MMP, and CD reduced both intracellular F-actin and viability. H-1152 was found to be the best candidate compound since it reduced HTC contractility with minimal side effects. The authors propose that their HTC-based assay system can be used to screen for compounds that modulate HTC contractility and assess the underlying physiological mechanism(s) of compound activity and toxicity.


Nutrition and Cancer | 2017

Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats

Pan Pan; Vy Lam; Nita H. Salzman; Yi-Wen Huang; Jianhua Yu; Jianying Zhang; Li-Shu Wang

ABSTRACT Natural compounds can alter the diversity and composition of the gut microbiome, potentially benefiting our health. We previously demonstrated chemopreventive effects of black raspberries (BRBs) in colorectal cancer, which is associated with gut dysbiosis. To investigate the effects of whole BRBs and their fractions on gut microbiota, we fed F-344 rats a control diet, 5% BRBs, the BRB anthocyanin fraction, or the BRB residue fraction for 6 weeks. Feces were collected at baseline and at weeks 3 and 6, and bacterial sequence counts were analyzed. We observed distinct patterns of microbiota from different diet groups. Beta diversity analysis suggested that all diet groups exerted time-dependent changes in the bacterial diversity. Hierarchical clustering analysis revealed that post-diet fecal microbiota was segregated from baseline fecal microbiota within each diet. It is interesting to note that fractions of BRBs induced different changes in gut bacteria compared to whole BRBs. The abundance of specific microbial species known to have anti-inflammatory effects, such as Akkermansia and Desulfovibrio, was increased by whole BRBs and their residue. Further, butyrate-producing bacteria, e.g., Anaerostipes, were increased by whole BRBs. Our results suggest that whole BRBs and their fractions alter the gut microbiota in ways that could significantly influence human health.

Collaboration


Dive into the Vy Lam's collaboration.

Top Co-Authors

Avatar

Nita H. Salzman

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

John E. Baker

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

David M. Gourlay

Children's Hospital of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Katherine Fredrich

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Tetsuro Wakatsuki

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Jidong Su

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Pippa Simpson

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bhaskar Gurram

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Brian L. Fish

Medical College of Wisconsin

View shared research outputs
Researchain Logo
Decentralizing Knowledge