Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vyacheslav Kalchenko is active.

Publication


Featured researches published by Vyacheslav Kalchenko.


Journal of Clinical Investigation | 2008

Uterine DCs are crucial for decidua formation during embryo implantation in mice

Vicki Plaks; Tal Birnberg; Tamara Berkutzki; Shay Sela; Adi BenYashar; Vyacheslav Kalchenko; Gil Mor; Eli Keshet; Nava Dekel; Michal Neeman; Steffen Jung

Implantation is a key stage during pregnancy, as the fate of the embryo is often decided upon its first contact with the maternal endometrium. Around this time, DCs accumulate in the uterus; however, their role in pregnancy and, more specifically, implantation, remains unknown. We investigated the function of uterine DCs (uDCs) during implantation using a transgenic mouse model that allows conditional ablation of uDCs in a spatially and temporally regulated manner. Depletion of uDCs resulted in a severe impairment of the implantation process, leading to embryo resorption. Depletion of uDCs also caused embryo resorption in syngeneic and T cell-deficient pregnancies, which argues against a failure to establish immunological tolerance during implantation. Moreover, even in the absence of embryos, experimentally induced deciduae failed to adequately form. Implantation failure was associated with impaired decidual proliferation and differentiation. Dynamic contrast-enhanced MRI revealed perturbed angiogenesis characterized by reduced vascular expansion and attenuated maturation. We suggest therefore that uDCs directly fine-tune decidual angiogenesis by providing two critical factors, sFlt1 and TGF-beta1, that promote coordinated blood vessel maturation. Collectively, uDCs appear to govern uterine receptivity, independent of their predicted role in immunological tolerance, by regulating tissue remodeling and angiogenesis. Importantly, our results may aid in understanding the limited implantation success of embryos transferred following in vitro fertilization.


Nature Medicine | 2007

MRI detection of transcriptional regulation of gene expression in transgenic mice.

Batya Cohen; Keren Ziv; Vicki Plaks; Tomer Israely; Vyacheslav Kalchenko; Alon Harmelin; Laura E. Benjamin; Michal Neeman

Ferritin, the iron storage protein, was recently suggested to be a candidate reporter for the detection of gene expression by magnetic resonance imaging (MRI). Here we report the generation of TET:EGFP-HAferritin (tet-hfer) transgenic mice, in which tissue-specific inducible transcriptional regulation of expression of the heavy chain of ferritin could be detected in vivo by MRI. We show organ specificity by mating the tet-hfer mice with transgenic mice expressing tetracycline transactivator (tTA) in liver hepatocytes and in vascular endothelial cells. Tetracycline-regulated overexpression of ferritin resulted in specific alterations of the transverse relaxation rate (R2) of water. Transgene-dependent changes in R2 were detectable by MRI in adult mice, and we also found fetal developmental induction of transgene expression in utero. Thus, the tet-hfer MRI reporter mice provide a new transgenic mouse platform for in vivo molecular imaging of reporter gene expression by MRI during both embryonic and adult life.


Nature Immunology | 2008

Perivascular clusters of dendritic cells provide critical survival signals to B cells in bone marrow niches

Anita Sapoznikov; Yael Pewzner-Jung; Vyacheslav Kalchenko; Rita Krauthgamer; Idit Shachar; Steffen Jung

Beyond its established function in hematopoiesis, the bone marrow hosts mature lymphocytes and acts as a secondary lymphoid organ in the initiation of T cell and B cell responses. Here we report the characterization of bone marrow–resident dendritic cells (bmDCs). Multiphoton imaging showed that bmDCs were organized into perivascular clusters that enveloped blood vessels and were seeded with mature B lymphocytes and T lymphocytes. Conditional ablation of bmDCs in these bone marrow immune niches led to the specific loss of mature B cells, a phenotype that could be reversed by overexpression of the antiapoptotic factor Bcl-2 in B cells. The presence of bmDCs promoted the survival of recirculating B cells in the bone marrow through the production of macrophage migration–inhibitory factor. Thus, bmDCs are critical for the maintenance of recirculating B cells in the bone marrow.


Journal of Experimental Medicine | 2011

Neuroprotection and progenitor cell renewal in the injured adult murine retina requires healing monocyte-derived macrophages

Anat London; Elena Itskovich; Inbal Benhar; Vyacheslav Kalchenko; Matthias Mack; Steffen Jung; Michal Schwartz

After retinal injury in mice, infiltrating monocyte-derived macrophages preserve retinal ganglion cells and promote retinal progenitor cell renewal.


Nature Immunology | 2012

Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots

Ziv Shulman; Shmuel J. Cohen; Ben Roediger; Vyacheslav Kalchenko; Rohit Jain; Valentin Grabovsky; Eugenia Klein; Vera Shinder; Liat Stoler-Barak; Sara W. Feigelson; Tsipi Meshel; Susanna M. Nurmi; Itamar Goldstein; Olivier Hartley; Carl G. Gahmberg; Amos Etzioni; Wolfgang Weninger; Adit Ben-Baruch; Ronen Alon

Chemokines presented by the endothelium are critical for integrin-dependent adhesion and transendothelial migration of naive and memory lymphocytes. Here we found that effector lymphocytes of the type 1 helper T cell (TH1 cell) and type 1 cytotoxic T cell (TC1 cell) subtypes expressed adhesive integrins that bypassed chemokine signals and established firm arrests on variably inflamed endothelial barriers. Nevertheless, the transendothelial migration of these lymphocytes strictly depended on signals from guanine nucleotide–binding proteins of the Gi type and was promoted by multiple endothelium-derived inflammatory chemokines, even without outer endothelial surface exposure. Instead, transendothelial migration–promoting endothelial chemokines were stored in vesicles docked on actin fibers beneath the plasma membranes and were locally released within tight lymphocyte-endothelial synapses. Thus, effector T lymphocytes can cross inflamed barriers through contact-guided consumption of intraendothelial chemokines without surface-deposited chemokines or extraendothelial chemokine gradients.


Cancer Research | 2006

Inhibition of Tumor Growth and Elimination of Multiple Metastases in Human Prostate and Breast Xenografts by Systemic Inoculation of a Host Defense–Like Lytic Peptide

Niv Papo; Dalia Seger; Arik Makovitzki; Vyacheslav Kalchenko; Zelig Eshhar; Hadassa Degani; Yechiel Shai

We report on a short host defense-like peptide that targets and arrests the growth of aggressive and hormone-resistant primary human prostate and breast tumors and prevents their experimental and spontaneous metastases, respectively, when systemically inoculated to immunodeficient mice. These effects are correlated with increased necrosis of the tumor cells and a significant decrease in the overall tumor microvessel density, as well as newly formed capillary tubes and prostate-specific antigen secretion (in prostate tumors). Growth inhibition of orthotopic tumors derived from stably transfected highly fluorescent human breast cancer cells and prevention of their naturally occurring metastases were visualized in real time by using noninvasive whole-body optical imaging. The exclusive selectivity of the peptide towards cancer derives from its specific binding to surface phosphatidylserine and the killing of the cancer cells via cytoplasmic membrane depolarization. These data indicate that membrane disruption can provide a therapeutic means of inhibiting tumor growth and preventing metastases of various cancers.


Cancer Research | 2007

In vivo Imaging of the Systemic Recruitment of Fibroblasts to the Angiogenic Rim of Ovarian Carcinoma Tumors

Dorit Granot; Yoseph Addadi; Vyacheslav Kalchenko; Alon Harmelin; Michal Neeman

Tumor-associated stroma, in general, and tumor fibroblasts and myofibroblasts, in particular, play a role in tumor progression. We previously reported that myofibroblast infiltration into implanted ovarian carcinoma spheroids marked the exit of tumors from dormancy and that these cells contributed to vascular stabilization in ovarian tumors by expression of angiopoietin-1 and angiopoietin-2. Ex vivo labeling of fibroblasts with either magnetic resonance or optical probes rendered them detectable for in vivo imaging. Thus, magnetic resonance imaging (MRI) follow-up was feasible by biotin-bovine serum albumin-gadolinium diethylenetriaminepentaacetic acid or iron oxide particles, whereas labeling with near-IR and fluorescent vital stains enabled in vivo visualization by near-IR imaging and two-photon microscopy. Using this approach, we show here that prelabeled fibroblasts given i.p. to CD-1 nude mice can be followed in vivo by MRI and optical imaging over several days, revealing their extensive recruitment into the stroma of remote s.c. MLS human epithelial ovarian carcinoma tumors. Two-photon microscopy revealed the alignment of these invading fibroblasts in the outer rim of the tumor, colocalizing with the angiogenic neovasculature. Such angiogenic vessels remained confined to the stroma tracks within the tumor and did not penetrate the tumor nodules. These results provide dynamic evidence for the role of tumor fibroblasts in maintenance of functional tumor vasculature and offer means for image-guided targeting of these abundant stroma cells to the tumor as a possible mechanism for cellular cancer therapy.


The Plant Cell | 2005

DDM1 Binds Arabidopsis Methyl-CpG Binding Domain Proteins and Affects Their Subnuclear Localization

Assaf Zemach; Yan Li; Bess Wayburn; Hagit Ben-Meir; Vladimir Kiss; Yigal Avivi; Vyacheslav Kalchenko; Steven E. Jacobsen; Gideon Grafi

Methyl-CpG binding domain (MBD) proteins in Arabidopsis thaliana bind in vitro methylated CpG sites. Here, we aimed to characterize the binding properties of AtMBDs to chromatin in Arabidopsis nuclei. By expressing in wild-type cells AtMBDs fused to green fluorescent protein (GFP), we showed that AtMBD7 was evenly distributed at all chromocenters, whereas AtMBD5 and 6 showed preference for two perinucleolar chromocenters adjacent to nucleolar organizing regions. AtMBD2, previously shown to be incapable of binding in vitro–methylated CpG, was dispersed within the nucleus, excluding chromocenters and the nucleolus. Recruitment of AtMBD5, 6, and 7 to chromocenters was disrupted in ddm1 and met1 mutant cells, where a significant reduction in cytosine methylation occurs. In these mutant cells, however, AtMBD2 accumulated at chromocenters. No effect on localization was observed in the chromomethylase3 mutant showing reduced CpNpG methylation or in kyp-2 displaying a reduction in Lys 9 histone H3 methylation. Transient expression of DDM1 fused to GFP showed that DDM1 shares common sites with AtMBD proteins. Glutathione S-transferase pull-down assays demonstrated that AtMBDs bind DDM1; the MBD motif was sufficient for this interaction. Our results suggest that the subnuclear localization of AtMBD is not solely dependent on CpG methylation; DDM1 may facilitate localization of AtMBDs at specific nuclear domains.


Cancer Research | 2006

Real-time Imaging of Lymphogenic Metastasis in Orthotopic Human Breast Cancer

Maya Dadiani; Vyacheslav Kalchenko; Ady Yosepovich; Raanan Margalit; Yaron Hassid; Hadassa Degani; Dalia Seger

Metastatic spread to regional lymph nodes is one of the earliest events of tumor cell dissemination and presents a most significant prognostic factor for predicting survival of cancer patients. Real-time in vivo imaging of the spread of tumor cells through the lymphatic system can enhance our understanding of the metastatic process. Herein, we describe the use of in vivo fluorescence microscopy imaging to monitor the progression of lymph node metastasis as well as the course of spontaneous metastasis through the lymphatic system of orthotopic MDA-MB-231 human breast cancer tumors in severe combined immunodeficient mice. High-resolution noninvasive visualization of metastasizing cancer cells in the inguinal lymph nodes was achieved using cells expressing high levels of red fluorescent protein. Sequential imaging of these lymph nodes revealed the initial invasion of the tumor cells through the lymphatic system into the subcapsular sinuses followed by intrusion into the parenchyma of the nodes. FITC-dextran injected i.d. in the tumor area enabled simultaneous tracking of lymphatic vessels, labeled in green, and disseminated red cancer cells within these vessels. Fast snapshots of spontaneously metastasizing cells in the lymphatic vessels monitored the movement of a few tumor cells and the development of clumps clustered at lymphatic vessel junctions. Quantification of high interstitial fluid pressure (IFP) in the tumors and fast drainage rates of the FITC-dextran into the peritumoral lymphatic vessels suggested an IFP-induced intravasation into the lymphatic system. This work presents unprecedented live fluorescence images that may help to clarify the steps occurring in the course of spontaneous lymphogenic metastasis.


PLOS ONE | 2010

Permanent Occlusion of Feeding Arteries and Draining Veins in Solid Mouse Tumors by Vascular Targeted Photodynamic Therapy (VTP) with Tookad

Noa Madar-Balakirski; Catherine Tempel-Brami; Vyacheslav Kalchenko; Ori Brenner; David Varon; Avigdor Scherz; Yoram Salomon

Background Antiangiogenic and anti-vascular therapies present intriguing alternatives to cancer therapy. However, despite promising preclinical results and significant delays in tumor progression, none have demonstrated long-term curative features to date. Here, we show that a single treatment session of Tookad-based vascular targeted photodynamic therapy (VTP) promotes permanent arrest of tumor blood supply by rapid occlusion of the tumor feeding arteries (FA) and draining veins (DV), leading to tumor necrosis and eradication within 24–48 h. Methodology/Principal Findings A mouse earlobe MADB106 tumor model was subjected to Tookad-VTP and monitored by three complementary, non-invasive online imaging techniques: Fluorescent intravital microscopy, Dynamic Light Scattering Imaging and photosensitized MRI. Tookad-VTP led to prompt tumor FA vasodilatation (a mean volume increase of 70%) with a transient increase (60%) in blood-flow rate. Rapid vasoconstriction, simultaneous blood clotting, vessel permeabilization and a sharp decline in the flow rates then followed, culminating in FA occlusion at 63.2 sec±1.5SEM. This blockage was deemed irreversible after 10 minutes of VTP treatment. A decrease in DV blood flow was demonstrated, with a slight lag from FA response, accompanied by frequent changes in flow direction before reaching a complete standstill. In contrast, neighboring, healthy tissue vessels of similar sizes remained intact and functional after Tookad-VTP. Conclusion/Significance Tookad-VTP selectively targets the tumor feeding and draining vessels. To the best of our knowledge, this is the first mono-therapeutic modality that primarily aims at the larger tumor vessels and leads to high cure rates, both in the preclinical and clinical arenas.

Collaboration


Dive into the Vyacheslav Kalchenko's collaboration.

Top Co-Authors

Avatar

Alon Harmelin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Michal Neeman

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yuri Kuznetsov

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steffen Jung

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Avigdor Scherz

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Yoram Salomon

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Noa Madar-Balakirski

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alexander Brandis

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Alexander Brill

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge