Vyacheslav V. Filichev
Massey University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Vyacheslav V. Filichev.
Journal of Medicinal Chemistry | 2009
Susanna Cogoi; Manikandan Paramasivam; Vyacheslav V. Filichev; Imrich Géci; Erik B. Pedersen; Luigi E. Xodo
A new quadruplex motif located in the promoter of the human KRAS gene, within a nuclease hypersensitive element (NHE), has been characterized. Oligonucleotides mimicking this quadruplex are found to compete with a DNA-protein complex between NHE and a nuclear extract from pancreatic cancer cells. When modified with (R)-1-O-[4-1-(1-pyrenylethynyl) phenylmethyl]glycerol insertions (TINA), the quadruplex oligonucleotides showed a dramatic increase of the T(m) (deltaT(m) from 22 to 32 degrees C) and a strong antiproliferative effects in Panc-1 cells.
Nucleic Acids Research | 2011
Erik Bjerregaard Pedersen; Jakob Toudahl Nielsen; Claus Nielsen; Vyacheslav V. Filichev
Two G-quadruplex forming sequences, 5′-TGGGAG and the 17-mer sequence T30177, which exhibit anti-HIV-1 activity on cell lines, were modified using either locked nucleic acids (LNA) or via insertions of (R)-1-O-(pyren-1-ylmethyl)glycerol (intercalating nucleic acid, INA) or (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (twisted intercalating nucleic acid, TINA). Incorporation of LNA or INA/TINA monomers provide as much as 8-fold improvement of anti-HIV-1 activity. We demonstrate for the first time a detailed analysis of the effect the incorporation of INA/TINA monomers in quadruplex forming oligonucleotides (QFOs) and the effect of LNA monomers in the context of biologically active QFOs. In addition, recent literature reports and our own studies on the gel retardation of the phosphodiester analogue of T30177 led to the conclusion that this sequence forms a parallel, dimeric G-quadruplex. Introduction of the 5′-phosphate inhibits dimerisation of this G-quadruplex as a result of negative charge–charge repulsion. Contrary to that, we found that attachment of the 5′-O-DMT-group produced a more active 17-mer sequence that showed signs of aggregation—forming multimeric G-quadruplex species in solution. Many of the antiviral QFOs in the present study formed more thermally stable G-quadruplexes and also high-order G-quadruplex structures which might be responsible for the increased antiviral activity observed.
Chemistry: A European Journal | 2008
Vyacheslav V. Filichev; Irina V. Astakhova; Andrei D. Malakhov; Vladimir A. Korshun; Erik B. Pedersen
A postsynthetic, on-column Sonogashira reaction was applied on DNA molecules modified by 2- or 4-iodophenylmethylglycerol in the middle of the sequence, to give the corresponding ortho- and para-twisted intercalating nucleic acids (TINA) with 1-, 2-, and 4-ethynylpyrene residues. The convenient synthesis of 2- and 4-ethynylpyrenes started from the hydrogenolysis of pyrene that has had the sulfur removed and separation of 4,5,9,10-tetrahydropyrene and 1,2,3,6,7,8-hexahydropyrene, which were later converted to the final compounds by successive Friedel-Crafts acetylation, aromatization by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone, and a Vilsmeier-Haack-Arnold transformation followed by a Bodendorf fragmentation. Significant alterations in thermal stability of parallel triplexes and antiparallel duplexes were observed upon changing the attachment of ethynylpyrenes from para to ortho in homopyrimidine TINAs. Thus, for para-TINAs the bulge insertion of an intercalator led to high thermal stability of Hoogsteen-type parallel triplexes and duplexes, whereas Watson-Crick-type duplexes were destabilized. In the case of ortho-TINA, both Hoogsteen and Watson-Crick-type complexes were stabilized. Alterations in the thermal stability were highly influenced by the ethynylpyrene isomers used. This also led to TINAs with different changes in fluorescence spectra depending on the secondary structures formed. Stokes shift of approximately 100 nm was detected for pyren-2-ylethynylphenyl derivatives, whereas values for 1- and 4-ethynylpyrenylphenyl conjugates were 10 and 40 nm, respectively. In contrast with para-TINAs, insertion of two ortho-TINAs opposite each other in the duplex as a pseudo-pair resulted in formation of an excimer band at 505 nm for both 1- and 4-ethynylpyrene analogues, which was also accompanied with higher thermal stability.
Nucleic Acids Research | 2008
Manikandan Paramasivam; Susanna Cogoi; Vyacheslav V. Filichev; Niels Bomholt; Erik Bjerregaard Pedersen; Luigi E. Xodo
Sequence-specific targeting of genomic DNA by triplex-forming oligonucleotides (TFOs) is a promising strategy to modulate in vivo gene expression. Triplex formation involving G-rich oligonucleotides as third strand is, however, strongly inhibited by potassium-induced TFO self-association into G-quartet structures. We report here that G-rich TFOs with bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)-phenylmethyl] glycerol (called twisted intercalating nucleic acids, TINA) show a much lower tendency to aggregate in potassium than wild-type analogues do. We designed purine-motif TINA–TFOs for binding to a regulatory polypurine-polypyrimidine (pur/pyr) motif present in the promoter of the KRAS proto-oncogene. The binding of TINA–TFOs to the KRAS target has been analysed by electrophoresis mobility shift assays and DNase I footprinting experiments. We discovered that in the presence of potassium the wild-type TFOs did not bind to the KRAS target, differently from the TINA analogues, whose binding was observed up to 140 mM KCl. The designed TINA–TFOs were found to abrogate the formation of a DNA–protein complex at the pur/pyr site and to down-regulate the transcription of CAT driven by the murine KRAS promoter. Molecular modelling of the DNA/TINA–TFO triplexes are also reported. This study provides a new and promising approach to create TFOs to target in vivo the genome.
Carbohydrate Research | 2001
Vyacheslav V. Filichev; Malene Brandt; Erik B. Pedersen
Azasugars were obtained in one-pot reactions by catalytic reduction reactions of amino group precursors in aldosugars followed by intramolecular reductive amino alkylation reactions. (3R,4S)-4-[(1S)-1,2-Dihydroxyethyl]pyrrolidin-3-ol was obtained from D-xylose by two different strategies through 3-C-cyano-3-deoxy-D-ribo-pentofuranose or 3-C-azidomethyl-3-deoxy-D-ribo-pentofuranose in 6 and 16% overall yields, respectively. The oxidative cleavage of the diol group in the corresponding Fmoc-azasugar followed by deprotection afforded (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol. (3R,4S)-4-[(1S,2R)-1,2,3-Trihydroxypropyl]pyrrolidin-3-ol was synthesized from diacetone-D-glucose through 3-deoxy-3-C-nitromethyl-D-allose and the overall yield was 7%.
ChemBioChem | 2011
Osman Doluca; Alexandre S. Boutorine; Vyacheslav V. Filichev
The majority of studies on DNA triple helices have been focused on pH‐sensitive parallel triplexes with Hoogsteen CT‐containing third strands that require protonation of cytosines. Reverse Hoogsteen GT/GA‐containing antiparallel triplex‐forming oligonucleotides (TFOs) do not require an acidic pH but their applicability in triplex technology is limited because of their tendency to form undesired highly stable aggregates such as G‐quadruplexes. In this study, G‐rich oligonucleotides containing 2–4 insertions of twisted intercalating nucleic acid (TINA) monomers are demonstrated to disrupt the formation of G‐quadruplexes and form stable antiparallel triplexes with target DNA duplexes. The structure of TINA‐incorporated oligonucleotides was optimized, the rules of their design were established and the optimal triplex‐forming oligonucleotides were selected. These oligonucleotides show high affinity towards a 16 bp homopurine model sequence from the HIV‐1 genome; dissociation constants as low as 160 nM are observed whereas the unmodified TFO does not show any triplex formation and instead forms an intermolecular G‐quadruplex with Tm exceeding 90 °C in the presence of 50 mM NaCl. Here we present a set of rules that help to reach the full potential of TINA‐TFOs and demonstrate the effect of TINA on the formation and stability of triple helical DNA.
ChemBioChem | 2010
Adam W. I. Stephenson; Niels Bomholt; Ashton C. Partridge; Vyacheslav V. Filichev
(Figure Presented) Too groovy: The covalent attachment of up to four porphyrins to complementary strands led to the formation of DNA porphyrin zippers with significantly increased DNA duplex stability. This is a result of H-aggregate formation in the minor groove. To the best of our knowledge this is the first report showing such a significant thermal duplex stabilization.
Tetrahedron | 2001
Vyacheslav V. Filichev; Erik B. Pedersen
Abstract Pyrimidine 1′-aza-C-nucleosides are synthesised by the fusion of 5-bromouracil, 5-bromocytosine and 5-bromoisocytosine with (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol in 40–41% yield. A homologue of 1′-aza-Ψ-uridine is obtained in a Mannich reaction in 65% yield by treatment of the azasugar, paraformaldehyde and uracil. N-Alkylation of (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol with 6-chloromethyluracil gives the 6-regioisomeric homologue. (3R,4R)-4-(Hydroxymethyl)pyrrolidin-3-ol is synthesised in 25% overall yield from diacetone- d -glucose via 3-C-(azidomethyl)-3-deoxy- d -allose which is subjected to an intramolecular reductive amino alkylation reaction to give (3R,4S)-4-[(1S,2R)-1,2,3-trihydroxypropyl]pyrrolidin-3-ol followed by Fmoc protection, oxidative cleavage of the triol group with further reduction of the obtained aldehyde and subsequent deprotection of the nitrogen atom.
Organic and Biomolecular Chemistry | 2003
Vyacheslav V. Filichev; Erik B. Pedersen
N-(Pyren-1-ylmethyl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol was synthesised from (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol and (3R,4S)-4-[(1S)-1,2-dihydroxyethyl] pyrrolidin-3-ol using alkylation with 1-(chloromethyl)pyrene or reductive amination with pyrene-1-carbaldehyde and NaCNBH3. The incorporation of N-(pyren-1-ylmethyl)azasugar moiety into oligodeoxynucleotides (ODN) as a bulge to form an intercalating nucleic acid (INA) induced a slight destabilization of INA-DNA duplex, whereas the INA-RNA duplex was strongly destabilized and 9 degrees C difference per modification in thermal stability between INA-DNA over INA-RNA duplexes was observed. The stabilization of a DNA three way junction (TWJ) was improved when the intercalator moiety was inserted into the junction region as a bulge.
ChemBioChem | 2008
Ineke Van Daele; Niels Bomholt; Vyacheslav V. Filichev; Serge Van Calenbergh; Erik B. Pedersen
Triplex‐forming homopyrimidine oligonucleotides containing insertions of a 2′–5′ uridine linkage featuring a pyrene moiety at the 3′‐position exhibit strong fluorescence enhancement upon binding to double‐stranded DNA through Hoogsteen base pairing. It is shown that perfect matching of the new modification to the base pair in the duplex is a prerequisite for strong fluorescence, thus offering the potential to detect single mutations in purine stretches of duplex DNA. The increase in the fluorescence signal was dependent on the thermal stability of the parallel triplex, so a reduction in the pH from 6.0 to 5.0 resulted in an increase in thermal stability from 25.0 to 55.0 °C and in an increase in the fluorescence quantum yield (ΦF) from 0.061 to 0.179, while the probe alone was fluorescently silent (ΦF=0.001–0.004). To achieve higher triplex stability, five nucleobases in a 14‐mer sequence were substituted with α‐L‐LNA monomers, which provided a triplex with a Tm of 49.5 °C and a ΦF of 0.158 at pH 6.0. Under similar conditions, a Watson–Crick‐type duplex formed with the latter probe showed lower fluorescence intensity (ΦF=0.081) than for the triplex.