Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vytautas Gapsys is active.

Publication


Featured researches published by Vytautas Gapsys.


Journal of Chemical Theory and Computation | 2015

Structural Ensembles of Intrinsically Disordered Proteins Depend Strongly on Force Field: A Comparison to Experiment.

Sarah Rauscher; Vytautas Gapsys; Michal Gajda; Markus Zweckstetter; Bert L. de Groot; Helmut Grubmüller

Intrinsically disordered proteins (IDPs) are notoriously challenging to study both experimentally and computationally. The structure of IDPs cannot be described by a single conformation but must instead be described as an ensemble of interconverting conformations. Atomistic simulations are increasingly used to obtain such IDP conformational ensembles. Here, we have compared the IDP ensembles generated by eight all-atom empirical force fields against primary small-angle X-ray scattering (SAXS) and NMR data. Ensembles obtained with different force fields exhibit marked differences in chain dimensions, hydrogen bonding, and secondary structure content. These differences are unexpectedly large: changing the force field is found to have a stronger effect on secondary structure content than changing the entire peptide sequence. The CHARMM 22* ensemble performs best in this force field comparison: it has the lowest error in chemical shifts and J-couplings and agrees well with the SAXS data. A high population of left-handed α-helix is present in the CHARMM 36 ensemble, which is inconsistent with measured scalar couplings. To eliminate inadequate sampling as a reason for differences between force fields, extensive simulations were carried out (0.964 ms in total); the remaining small sampling uncertainty is shown to be much smaller than the observed differences. Our findings highlight how IDPs, with their rugged energy landscapes, are highly sensitive test systems that are capable of revealing force field deficiencies and, therefore, contributing to force field development.


Structure | 2013

Phosphorylation Drives a Dynamic Switch in Serine/Arginine-Rich Proteins

ShengQi Xiang; Vytautas Gapsys; Hai-Young Kim; Sergey Bessonov; He-Hsuan Hsiao; Sina Möhlmann; Volker Klaukien; Ralf Ficner; Stefan Becker; Henning Urlaub; Reinhard Lührmann; Bert L. de Groot; Markus Zweckstetter

Serine/arginine-rich (SR) proteins are important players in RNA metabolism and are extensively phosphorylated at serine residues in RS repeats. Here, we show that phosphorylation switches the RS domain of the serine/arginine-rich splicing factor 1 from a fully disordered state to a partially rigidified arch-like structure. Nuclear magnetic resonance spectroscopy in combination with molecular dynamics simulations revealed that the conformational switch is restricted to RS repeats, critically depends on the phosphate charge state and strongly decreases the conformational entropy of RS domains. The dynamic switch also occurs in the 100 kDa SR-related protein hPrp28, for which phosphorylation at the RS repeat is required for spliceosome assembly. Thus, a phosphorylation-induced dynamic switch is common to the class of serine/arginine-rich proteins and provides a molecular basis for the functional redundancy of serine/arginine-rich proteins and the profound influence of RS domain phosphorylation on protein-protein and protein-RNA interactions.


Journal of Computer-aided Molecular Design | 2013

Computational analysis of local membrane properties.

Vytautas Gapsys; Bert L. de Groot; Rodolfo Briones

In the field of biomolecular simulations, dynamics of phospholipid membranes is of special interest. A number of proteins, including channels, transporters, receptors and short peptides are embedded in lipid bilayers and tightly interact with phospholipids. While the experimental measurements report on the spatial and/or temporal average membrane properties, simulation results are not restricted to the average properties. In the current study, we present a collection of methods for an efficient local membrane property calculation, comprising bilayer thickness, area per lipid, deuterium order parameters, Gaussian and mean curvature. The local membrane property calculation allows for a direct mapping of the membrane features, which subsequently can be used for further analysis and visualization of the processes of interest. The main features of the described methods are highlighted in a number of membrane systems, namely: a pure dimyristoyl-phosphatidyl-choline (DMPC) bilayer, a fusion peptide interacting with a membrane, voltage-dependent anion channel protein embedded in a DMPC bilayer, cholesterol enriched bilayer and a coarse grained simulation of a curved palmitoyl-oleoyl-phosphatidyl-choline lipid membrane. The local membrane property analysis proves to provide an intuitive and detailed view on the observables that are otherwise interpreted as averaged bilayer properties.


Journal of Molecular Biology | 2012

Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations.

Dirk Matthes; Vytautas Gapsys; Bert L. de Groot

Understanding the structural and energetic requirements of non-fibrillar oligomer formation harbors the potential to decipher an important yet still elusive part of amyloidogenic peptide and protein aggregation. Low-molecular-weight oligomers are described to be transient and polymorphic intermediates in the nucleated self-assembly process to highly ordered amyloid fibers and were additionally found to exhibit a profound cytotoxicity. However, detailed structural information on the oligomeric species involved in the nucleation cannot be readily inferred from experiments. Here, we study the spontaneous assembly of steric zipper peptides from the tau protein, insulin and α-synuclein with atomistic molecular dynamics simulations on the microsecond timescale. Detailed analysis of the forces driving the oligomerization reveals a common two-step process akin to a general condensation-ordering mechanism and thus provides a rational understanding of the molecular basis of peptide self-assembly. Our results suggest that the initial formation of partially ordered peptide oligomers is governed by the solvation free energy, whereas the dynamical ordering and emergence of β-sheets are mainly driven by optimized inter-peptide interactions in the collapsed state. A novel mapping technique based on collective coordinates is employed to highlight similarities and differences in the conformational ensemble of small oligomer structures. Elucidating the dynamical and polymorphic β-sheet oligomer conformations at atomistic detail furthermore suggests complementary sheet packing characteristics similar to steric zipper structures, but with a larger heterogeneity in the strand alignment pattern and sheet-to-sheet arrangements compared to the cross-β motif found in the fibrillar or crystalline states.


PLOS ONE | 2011

Mapping the Conformational Dynamics and Pathways of Spontaneous Steric Zipper Peptide Oligomerization

Dirk Matthes; Vytautas Gapsys; Venita Daebel; Bert L. de Groot

The process of protein misfolding and self-assembly into various, polymorphic aggregates is associated with a number of important neurodegenerative diseases. Only recently, crystal structures of several short peptides have provided detailed structural insights into -sheet rich aggregates, known as amyloid fibrils. Knowledge about early events of the formation and interconversion of small oligomeric states, an inevitable step in the cascade of peptide self-assembly, however, remains still limited. We employ molecular dynamics simulations in explicit solvent to study the spontaneous aggregation process of steric zipper peptide segments from the tau protein and insulin in atomistic detail. Starting from separated chains with random conformations, we find a rapid formation of structurally heterogeneous, -sheet rich oligomers, emerging from multiple bimolecular association steps and diverse assembly pathways. Furthermore, our study provides evidence that aggregate intermediates as small as dimers can be kinetically trapped and thus affect the structural evolution of larger oligomers. Alternative aggregate structures are found for both peptide sequences in the different independent simulations, some of which feature characteristics of the known steric zipper conformation (e.g., -sheet bilayers with a dry interface). The final aggregates interconvert with topologically distinct oligomeric states exclusively via internal rearrangements. The peptide oligomerization was analyzed through the perspective of a minimal oligomer, i.e., the dimer. Thereby all observed multimeric aggregates can be consistently mapped onto a space of reduced dimensionality. This novel method of conformational mapping reveals heterogeneous association and reorganization dynamics that are governed by the characteristics of peptide sequence and oligomer size.


Journal of Chemical Theory and Computation | 2012

New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations

Vytautas Gapsys; Daniel Seeliger; B. L. de Groot

The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the systems Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.


Journal of Computational Chemistry | 2015

pmx: Automated protein structure and topology generation for alchemical perturbations.

Vytautas Gapsys; Servaas Michielssens; Daniel Seeliger; Bert L. de Groot

Computational protein design requires methods to accurately estimate free energy changes in protein stability or binding upon an amino acid mutation. From the different approaches available, molecular dynamics‐based alchemical free energy calculations are unique in their accuracy and solid theoretical basis. The challenge in using these methods lies in the need to generate hybrid structures and topologies representing two physical states of a system. A custom made hybrid topology may prove useful for a particular mutation of interest, however, a high throughput mutation analysis calls for a more general approach. In this work, we present an automated procedure to generate hybrid structures and topologies for the amino acid mutations in all commonly used force fields. The described software is compatible with the Gromacs simulation package. The mutation libraries are readily supported for five force fields, namely Amber99SB, Amber99SB*‐ILDN, OPLS‐AA/L, Charmm22*, and Charmm36.


Angewandte Chemie | 2016

Accurate and Rigorous Prediction of the Changes in Protein Free Energies in a Large-Scale Mutation Scan.

Vytautas Gapsys; Servaas Michielssens; Daniel Seeliger; Bert L. de Groot

Abstract The prediction of mutation‐induced free‐energy changes in protein thermostability or protein–protein binding is of particular interest in the fields of protein design, biotechnology, and bioengineering. Herein, we achieve remarkable accuracy in a scan of 762 mutations estimating changes in protein thermostability based on the first principles of statistical mechanics. The remaining error in the free‐energy estimates appears to be due to three sources in approximately equal parts, namely sampling, force‐field inaccuracies, and experimental uncertainty. We propose a consensus force‐field approach, which, together with an increased sampling time, leads to a free‐energy prediction accuracy that matches those reached in experiments. This versatile approach enables accurate free‐energy estimates for diverse proteins, including the prediction of changes in the melting temperature of the membrane protein neurotensin receptor 1.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.

Hüseyin Ilgü; Jean-Marc Jeckelmann; Vytautas Gapsys; Zöhre Ucurum; Bert L. de Groot; Dimitrios Fotiadis

Significance Disease-causing bacteria are able to survive the strongly acidic environment of the stomach by activating extreme acid-resistance responses. One of these responses in gut bacteria consists of converting l-arginine into agmatine, which results in removal of one proton from the cytoplasm. In Escherichia coli, the transport protein AdiC assures the efflux of agmatine in exchange with l-arginine. We have solved the structures of wild-type AdiC in the presence and absence of the substrate agmatine at high resolution, allowing for the identification of crucial water molecules and of their functional roles in the substrate-binding pocket. Furthermore, structure-based site-directed mutagenesis combined with a radioligand binding assay improved our understanding of substrate binding and specificity of the l-arginine/agmatine antiporter AdiC. Pathogenic enterobacteria need to survive the extreme acidity of the stomach to successfully colonize the human gut. Enteric bacteria circumvent the gastric acid barrier by activating extreme acid-resistance responses, such as the arginine-dependent acid resistance system. In this response, l-arginine is decarboxylated to agmatine, thereby consuming one proton from the cytoplasm. In Escherichia coli, the l-arginine/agmatine antiporter AdiC facilitates the export of agmatine in exchange of l-arginine, thus providing substrates for further removal of protons from the cytoplasm and balancing the intracellular pH. We have solved the crystal structures of wild-type AdiC in the presence and absence of the substrate agmatine at 2.6-Å and 2.2-Å resolution, respectively. The high-resolution structures made possible the identification of crucial water molecules in the substrate-binding sites, unveiling their functional roles for agmatine release and structure stabilization, which was further corroborated by molecular dynamics simulations. Structural analysis combined with site-directed mutagenesis and the scintillation proximity radioligand binding assay improved our understanding of substrate binding and specificity of the wild-type l-arginine/agmatine antiporter AdiC. Finally, we present a potential mechanism for conformational changes of the AdiC transport cycle involved in the release of agmatine into the periplasmic space of E. coli.


Methods of Molecular Biology | 2015

Calculation of Binding Free Energies

Vytautas Gapsys; Servaas Michielssens; J. H. Peters; B. L. de Groot; Hadas Leonov

Molecular dynamics simulations enable access to free energy differences governing the driving force underlying all biological processes. In the current chapter we describe alchemical methods allowing the calculation of relative free energy differences. We concentrate on the binding free energies that can be obtained using non-equilibrium approaches based on the Crooks Fluctuation Theorem. Together with the theoretical background, the chapter covers practical aspects of hybrid topology generation, simulation setup, and free energy estimation. An important aspect of the validation of a simulation setup is illustrated by means of calculating free energy differences along a full thermodynamic cycle. We provide a number of examples, including protein-ligand and protein-protein binding as well as ligand solvation free energy calculations.

Collaboration


Dive into the Vytautas Gapsys's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Servaas Michielssens

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge