W. Alexander Merrill
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Alexander Merrill.
Chemical Science | 2010
Yang Peng; Roland C. Fischer; W. Alexander Merrill; Jelena Fischer; Lihung Pu; Bobby D. Ellis; James C. Fettinger; Rolfe H. Herber; Philip P. Power
The synthesis and characterization of a series of digermynes and distannynes stabilized by terphenyl ligands are described. The ligands are based on the Ar′ (Ar′ = C6H3-2,6(C6H3-2,6-iPr2)2) or Ar* (Ar* = C6H3-2,6(C6H2-2,4,6-iPr3)2) platforms which were modified at the meta or para positions of their central aryl rings to yield 4-X-Ar′ (4-X-Ar′ = 4-X-C6H2-2,6(C6H3-2,6-iPr2)2, X = H, F, Cl, OMe, tBu, SiMe3, GeMe3) and 3,5-iPr2-Ar′ or Ar* and 3,5-iPr2-Ar*. The compounds were synthesized by reduction of the terphenyl germanium(II) or tin(II) halide precursors with a variety of reducing agents. The precursors were obtained by the reaction of one equivalent of the lithium terphenyl with GeCl2 dioxane or SnCl2. For germanium, their X-ray crystal structures showed them to be either Ge–Ge bonded dimers with trans-pyramidal geometries or V-shaped monomers. In contrast, the terphenyl tin halides had no tin–tin bonding but existed either as halide bridged dimers or V-shaped monomers. Reduction with a variety of reducing agents afforded the digermynes ArGeGeAr (Ar = 4-Cl-Ar′, 4-SiMe3-Ar′ or 3,5-iPr2-Ar*) or the distannynes ArSnSnAr (Ar = 4-F-Ar′, 4-Cl-Ar′, 4-MeO-Ar′, 4-tBu-Ar′, 4-SiMe3-Ar′, 4-GeMe3-Ar′, 3,5-iPr2-Ar′, 3,5-iPr2-Ar*), which were characterized structurally and spectroscopically. The digermynes display planar trans-bent core geometries with Ge–Ge distances near 2.26 A and bending angles near 128° consistent with Ge–Ge multiple bonding. In contrast, the distannynes had either multiple bonded geometries with Sn–Sn distances that averaged 2.65 A and an average bending angle near 123.8°, or single bonded geometries with a Sn–Sn bond length near 3.06 A and a bending angle near 98°. The 3,5-iPr2-Ar*SnSnAr*-3,5-iPr2 species had an intermediate structure with a longer multiple bond near 2.73 A and a variable torsion angle (14–28°) between the tin coordination planes. Mossbauer data for the multiple and single bonded species displayed similar isomer shifts but had different quadrupole splittings.
Journal of the American Chemical Society | 2009
W. Alexander Merrill; Troy A. Stich; Marcin Brynda; Gregory J. Yeagle; James C. Fettinger; Raymond De Hont; William M. Reiff; Charles E. Schulz; R. David Britt; Philip P. Power
The monomeric iron(II) amido derivatives Fe{N(H)Ar*}(2) (1), Ar* = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Pr(i)(3))(2), and Fe{N(H)Ar(#)}(2) (2), Ar(#) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2), were synthesized and studied in order to determine the effects of geometric changes on their unusual magnetic properties. The compounds, which are the first stable homoleptic primary amides of iron(II), were obtained by the transamination of Fe{N(SiMe(3))(2)}(2), with HN(SiMe(3))(2) elimination, by the primary amines H(2)NAr* or H(2)NAr(#). X-ray crystallography showed that they have either strictly linear (1) or bent (2, N-Fe-N = 140.9(2) degrees ) iron coordination. Variable temperature magnetization and applied magnetic field Mossbauer spectroscopy studies revealed a very large dependence of the magnetic properties on the metal coordination geometry. At ambient temperature, the linear 1 displayed an effective magnetic moment in the range 7.0-7.50 mu(B), consistent with essentially free ion magnetism. There is a very high internal orbital field component, H(L) approximately 170 T which is only exceeded by a H(L) approximately 203 T of Fe{C(SiMe(3))(3)}(2). In contrast, the strongly bent 2 displayed a significantly lower mu(eff) value in the range 5.25-5.80 mu(B) at ambient temperature and a much lower orbital field H(L) value of 116 T. The data for the two amido complexes demonstrate a very large quenching of the orbital magnetic moment upon bending the linear geometry. In addition, a strong correlation of H(L) with overall formal symmetry is confirmed. ESR spectroscopy supports the existence of large orbital magnetic moments in 1 and 2, and DFT calculations provide good agreement with the physical data.
Inorganic Chemistry | 2012
Aimee M. Bryan; W. Alexander Merrill; William M. Reiff; James C. Fettinger; Philip P. Power
The complexes M(II){N(H)Ar(Pr(i)(6))}(2) (M = Co, 1 or Ni, 2; Ar(Pr(i)(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Pr(i)(3))(2)), which have rigorously linear, N-M-N = 180°, metal coordination, and M(II){N(H)Ar(Me(6))}(2) (M = Co, 3 or Ni, 4; Ar(Me(6)) = C(6)H(3)-2,6(C(6)H(2)-2,4,6-Me(3))(2)), which have bent, N-Co-N = 144.1(4)°, and N-Ni-N = 154.60(14)°, metal coordination, were synthesized and characterized to study the effects of the metal coordination geometries on their magnetic properties. The magnetometry studies show that the linear cobalt(II) species 1 has a very high ambient temperature moment of about 6.2 μ(B) (cf. spin only value = 3.87 μ(B)) whereas the bent cobalt species 3 had a lower μ(B) value of about 4.7 μ(B). In contrast, both the linear and the bent nickel complexes 2 and 4 have magnetic moments near 3.0 μ(B) at ambient temperatures, which is close to the spin only value of 2.83 μ(B). The studies suggest that in the linear cobalt species 1 there is a very strong enhanced spin orbital coupling which leads to magnetic moments that broach the free ion value of 6.63 μ(B) probably as a result of the relatively weak ligand field and its rigorously linear coordination. For the linear nickel species 2, however, the expected strong first order orbital angular momentum contribution does not occur (cf. free ion value 5.6 μ(B)) possibly because of π bonding effects involving the nitrogen p orbitals and the d(xz) and d(yz) orbitals (whose degeneracy is lifted in the C(2h) local symmetry of the Ni{N(H)C(ipso)}(2) array) which quench the orbital angular momentum.
Chemical Communications | 2006
Eric Rivard; W. Alexander Merrill; James C. Fettinger; Philip P. Power
A new class of heavier group 15 compounds demonstrating multiple bonding with boron has been synthesized using a simple donor-stabilization protocol.
Inorganic Chemistry | 2012
Jessica N. Boynton; W. Alexander Merrill; William M. Reiff; James C. Fettinger; Philip P. Power
The synthesis and characterization of the mononuclear chromium(II) terphenyl substituted primary amido-complexes Cr{N(H)Ar(Pr(i)(6))}(2) (Ar(Pr(i)(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-(i)Pr(3))(2) (1), Cr{N(H)Ar(Pr(i)(4))}(2) (Ar(Pr(i)(4)) = C(6)H(3)-2,6-(C(6)H(3)-2,6-(i)Pr(2))(2) (2), Cr{N(H)Ar(Me(6))}(2) (Ar(Me(6)) = C(6)H(3)-2,6-(C(6)H(2)-2,4,6-Me(3))(2) (4), and the Lewis base adduct Cr{N(H)Ar(Me(6))}(2)(THF) (3) are described. Reaction of the terphenyl primary amido lithium derivatives Li{N(H)Ar(Pr(i)(6))} and Li{N(H)Ar(Pr(i)(4))} with CrCl(2)(THF)(2) in a 2:1 ratio afforded complexes 1 and 2, which are extremely rare examples of two coordinate chromium and the first stable chromium amides to have linear coordinated high-spin Cr(2+). The reaction of the less crowded terphenyl primary amido lithium salt Li{N(H)Ar(Me(6))} with CrCl(2)(THF)(2) gave the tetrahydrofuran (THF) complex 3, which has a distorted T-shaped metal coordination. Desolvation of 3 at about 70 °C gave 4 which has a formally two-coordinate chromous ion with a very strongly bent core geometry (N-Cr-N= 121.49(13)°) with secondary Cr--C(aryl ring) interactions of 2.338(4) Å to the ligand. Magnetometry studies showed that the two linear chromium species 1 and 2 have ambient temperature magnetic moments of about 4.20 μ(B) and 4.33 μ(B) which are lower than the spin-only value of 4.90 μ(B) typically observed for six coordinate Cr(2+). The bent complex 4 has a similar room temperature magnetic moment of about 4.36 μ(B). These studies suggest that the two-coordinate chromium complexes have significant spin-orbit coupling effects which lead to moments lower than the spin only value of 4.90 μ(B) because λ (the spin orbit coupling parameter) is positive. The three-coordinated complex 3 had a magnetic moment of 3.79 μ(B).
Journal of the American Chemical Society | 2007
Zhongliang Zhu; Marcin Brynda; Robert J. Wright; Roland C. Fischer; W. Alexander Merrill; Eric Rivard; Robert Wolf; James C. Fettinger; Marilyn M. Olmstead; Philip P. Power
Journal of the American Chemical Society | 2007
Eric Rivard; Roland C. Fischer; Robert Wolf; Yang Peng; W. Alexander Merrill; Nathan D. Schley; Zhongliang Zhu; Lihung Pu; James C. Fettinger; Simon J. Teat; Isreal Nowik; Rolfe H. Herber; Nozomi Takagi; Shigeru Nagase, ,⊥ and; Philip P. Power
Angewandte Chemie | 2008
Tailuan Nguyen; W. Alexander Merrill; Chengbao Ni; Hao Lei; James C. Fettinger; Bobby D. Ellis; Gary J. Long; Marcin Brynda; Philip P. Power
Chemistry: A European Journal | 2009
Zhongliang Zhu; Roland C. Fischer; Bobby D. Ellis; Eric Rivard; W. Alexander Merrill; Marilyn M. Olmstead; Philip P. Power; Jing Dong Guo; Shigeru Nagase; Lihung Pu
Inorganic Chemistry | 2007
Eric Rivard; W. Alexander Merrill; James C. Fettinger; Robert Wolf; Geoffrey H. Spikes; Philip P. Power