Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Allen Miller is active.

Publication


Featured researches published by W. Allen Miller.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An overlapping essential gene in the Potyviridae

Betty Y.-W. Chung; W. Allen Miller; John F. Atkins; Andrew E. Firth

The family Potyviridae includes >30% of known plant virus species, many of which are of great agricultural significance. These viruses have a positive sense RNA genome that is ≈10 kb long and contains a single long ORF. The ORF is translated into a large polyprotein, which is cleaved into ≈10 mature proteins. We report the discovery of a short ORF embedded within the P3 cistron of the polyprotein but translated in the +2 reading-frame. The ORF, termed pipo, is conserved and has a strong bioinformatic coding signature throughout the large and diverse Potyviridae family. Mutations that knock out expression of the PIPO protein in Turnip mosaic potyvirus but leave the polyprotein amino acid sequence unaltered are lethal to the virus. Immunoblotting with antisera raised against two nonoverlapping 14-aa antigens, derived from the PIPO amino acid sequence, reveals the expression of an ≈25-kDa PIPO fusion product in planta. This is consistent with expression of PIPO as a P3-PIPO fusion product via ribosomal frameshifting or transcriptional slippage at a highly conserved G1-2A6-7 motif at the 5′ end of pipo. This discovery suggests that other short overlapping genes may remain hidden even in well studied virus genomes (as well as cellular organisms) and demonstrates the utility of the software package MLOGD as a tool for identifying such genes.


The Plant Cell | 2006

Dynamics of a Mobile RNA of Potato Involved in a Long-Distance Signaling Pathway

Anjan K. Banerjee; Mithu Chatterjee; Yueyue Yu; Sang-Gon Suh; W. Allen Miller; David J. Hannapel

BEL1-like transcription factors interact with Knotted1 types to regulate numerous developmental processes. In potato (Solanum tuberosum), the BEL1 transcription factor St BEL5 and its protein partner POTH1 regulate tuber formation by mediating hormone levels in the stolon tip. The accumulation of St BEL5 RNA increases in response to short-day photoperiods, inductive for tuber formation. RNA detection methods and heterografting experiments demonstrate that BEL5 transcripts are present in phloem cells and move across a graft union to localize in stolon tips, the site of tuber induction. This movement of RNA to stolon tips is correlated with enhanced tuber production. Overexpression of BEL5 transcripts that include the untranslated sequences of the BEL5 transcript endows transgenic lines with the capacity to overcome the inhibitory effects of long days on tuber formation. Addition of the untranslated regions leads to preferential accumulation of the BEL5 RNA in stolon tips under short-day conditions. Using a leaf-specific promoter, the movement of BEL5 RNA to stolon tips was facilitated by a short-day photoperiod, and this movement was correlated with enhanced tuber production. These results implicate the transcripts of St BEL5 in a long-distance signaling pathway that are delivered to the target organ via the phloem stream.


The EMBO Journal | 1997

A viral sequence in the 3′‐untranslated region mimics a 5′ cap in facilitating translation of uncapped mRNA

Shanping Wang; Karen S. Browning; W. Allen Miller

For recognition by the translational machinery, most eukaryotic cellular mRNAs have a 5′ cap structure [e.g. m7G(5′)ppp(5′)N]. We describe a translation enhancer sequence (3′TE) located in the 3′‐untranslated region (UTR) of the genome of the PAV barley yellow dwarf virus (BYDV‐PAV) which stimulates translation from uncapped mRNA by 30‐ to 100‐fold in vitro and in vivo to a level equal to that of efficient capped mRNAs. A four base duplication within the 3′TE destroyed the stimulatory activity. Efficient translation was recovered by addition of a 5′ cap to this mRNA. Translation of both uncapped mRNA containing the 3′TE in cis and capped mRNA lacking any BYDV‐PAV sequence was inhibited specifically by added 3′TE RNA in trans. This inhibition was reversed by adding initiation factor 4F (eIF4F), suggesting that the 3′TE, like the 5′ cap, mediates eIF4F‐dependent translation initiation. The BYDV‐PAV 5′UTR was necessary for the 3′TE to function, except when the 3′TE itself was moved to the 5′UTR. Thus, the 3′TE is sufficient for recruiting the translation factors and ribosomes, while the viral 5′UTR may serve only for the long distance 3′–5′ communication. Models are proposed to explain this novel mechanism of cap‐independent translation initiation facilitated by the 3′UTR.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A −1 ribosomal frameshift element that requires base pairing across four kilobases suggests a mechanism of regulating ribosome and replicase traffic on a viral RNA

Jennifer K. Barry; W. Allen Miller

Programmed −1 ribosomal frameshifting is necessary for translation of the polymerase genes of many viruses. In addition to the consensus elements in the mRNA around the frameshift site, we found previously that frameshifting on Barley yellow dwarf virus RNA requires viral sequence located four kilobases downstream. By using dual luciferase reporter constructs, we now show that a predicted loop in the far downstream frameshift element must base pair to a bulge in a bulged stem loop adjacent to the frameshift site. Introduction of either two or six base mismatches in either the bulge or the far downstream loop abolished frameshifting, whereas mutations in both sites that restored base pairing reestablished frameshifting. Likewise, disruption of this base pairing abolished viral RNA replication in plant cells, and restoration of base pairing completely reestablished virus replication. We propose a model in which Barley yellow dwarf virus uses this and another long-distance base-pairing event required for cap-independent translation to allow the replicase copying from the 3′ end to shut off translation of upstream ORFs and free the RNA of ribosomes to allow unimpeded replication. This would be a means of solving the “problem,” common to positive strand RNA viruses, of competition between ribosomes and replicase for the same RNA template.


PLOS Pathogens | 2012

Interaction of the Trans-Frame Potyvirus Protein P3N-PIPO with Host Protein PCaP1 Facilitates Potyvirus Movement

Paramasivan Vijayapalani; Masayoshi Maeshima; Nahoko Nagasaki-Takekuchi; W. Allen Miller

A small open reading frame (ORF), pipo, overlaps with the P3 coding region of the potyviral polyprotein ORF. Previous evidence suggested a requirement for pipo for efficient viral cell-to-cell movement. Here, we provide immunoblotting evidence that the protein PIPO is expressed as a trans-frame protein consisting of the amino-terminal half of P3 fused to PIPO (P3N-PIPO). P3N-PIPO of Turnip mosaic virus (TuMV) fused to GFP facilitates its own cell-to-cell movement. Using a yeast two-hybrid screen, co-immunoprecipitation assays, and bimolecular fluorescence complementation (BiFC) assays, we found that P3N-PIPO interacts with host protein PCaP1, a cation-binding protein that attaches to the plasma membrane via myristoylation. BiFC revealed that it is the PIPO domain of P3N-PIPO that binds PCaP1 and that myristoylation of PCaP1 is unnecessary for interaction with P3N-PIPO. In PCaP1 knockout mutants (pcap1) of Arabidopsis, accumulation of TuMV harboring a GFP gene (TuMV-GFP) was drastically reduced relative to the virus level in wild-type plants, only small localized spots of GFP were visible, and the plants showed few symptoms. In contrast, TuMV-GFP infection in wild-type Arabidopsis yielded large green fluorescent patches, and caused severe stunting. However, viral RNA accumulated to high level in protoplasts from pcap1 plants indicating that PCaP1 is not required for TuMV RNA synthesis. In contrast to TuMV, the tobamovirus Oilseed rape mosaic virus did not require PCaP1 to infect Arabidopsis plants. We conclude that potyviral P3N-PIPO interacts specifically with the host plasma membrane protein PCaP1 to participate in cell-to-cell movement. We speculate that PCaP1 links a complex of viral proteins and genomic RNA to the plasma membrane by binding P3N-PIPO, enabling localization to the plasmodesmata and cell-to-cell movement. The PCaP1 knockout may contribute to a new strategy for recessive resistance to potyviruses.


Journal of Virology | 2004

The 3′ Untranslated Region of Tobacco Necrosis Virus RNA Contains a Barley Yellow Dwarf Virus-Like Cap-Independent Translation Element

Ruizhong Shen; W. Allen Miller

ABSTRACT RNAs of many viruses are translated efficiently in the absence of a 5′ cap structure. The tobacco necrosis virus (TNV) genome is an uncapped, nonpolyadenylated RNA whose translation mechanism has not been well investigated. Computational analysis predicted a cap-independent translation element (TE) within the 3′ untranslated region (3′ UTR) of TNV RNA that resembles the TE of barley yellow dwarf virus (BYDV), a luteovirus. Here we report that such a TE does indeed exist in the 3′ UTR of TNV strain D. Like the BYDV TE, the TNV TE (i) functions both in vitro and in vivo, (ii) requires additional sequence for cap-independent translation in vivo, (iii) has a similar secondary structure and the conserved sequence CGGAUCCUGGGAAACAGG, (iv) is inactivated by a four-base duplication in this conserved sequence, (v) can function in the 5′ UTR, and (vi) when located in its natural 3′ location, may form long-distance base pairing with the viral 5′ UTR that is conserved and probably required. The TNV TE differs from the BYDV TE by having only three helical domains instead of four. Similar structures were found in all members of the Necrovirus genus of the Tombusviridae family, except satellite tobacco necrosis virus, which harbors a different 3′ cap-independent translation domain. The presence of the BYDV-like TE in select genera of different families indicates that phylogenetic distribution of TEs does not follow standard viral taxonomic relationships. We propose a new class of cap-independent TE called BYDV-like TE.


Journal of Virology | 2000

A Positive-Strand RNA Virus with Three Very Different Subgenomic RNA Promoters

Gennadiy Koev; W. Allen Miller

ABSTRACT Numerous RNA viruses generate subgenomic mRNAs (sgRNAs) for expression of their 3′-proximal genes. A major step in control of viral gene expression is the regulation of sgRNA synthesis by specific promoter elements. We used barley yellow dwarf virus (BYDV) as a model system to study transcriptional control in a virus with multiple sgRNAs. BYDV generates three sgRNAs during infection. The sgRNA1 promoter has been mapped previously to a 98-nucleotide (nt) region which forms two stem-loop structures. It was determined that sgRNA1 is not required for BYDV RNA replication in oat protoplasts. In this study, we show that neither sgRNA2 nor sgRNA3 is required for BYDV RNA replication. The promoters for sgRNA2 and sgRNA3 synthesis were mapped by using deletion mutagenesis. The minimal sgRNA2 promoter is approximately 143 nt long (nt 4810 to 4952) and is located immediately downstream of the putative sgRNA2 start site (nt 4809). The minimal sgRNA3 core promoter is 44 nt long (nt 5345 to 5388), with most of the sequence located downstream of sgRNA3 start site (nt 5348). For both promoters, additional sequences upstream of the start site enhanced sgRNA promoter activity. These promoters contrast to the sgRNA1 promoter, in which almost all of the promoter is located upstream of the transcription initiation site. Comparison of RNA sequences and computer-predicted secondary structures revealed little or no homology between the three sgRNA promoter elements. Thus, a small RNA virus with multiple sgRNAs can have very different subgenomic promoters, which implies a complex system for promoter recognition and regulation of subgenomic RNA synthesis.


Journal of Biological Chemistry | 2009

Structure of a Viral Cap-independent Translation Element That Functions via High Affinity Binding to the eIF4E Subunit of eIF4F

Zhaohui Wang; Krzysztof Treder; W. Allen Miller

RNAs of many positive strand RNA viruses lack a 5′ cap structure and instead rely on cap-independent translation elements (CITEs) to facilitate efficient translation initiation. The mechanisms by which these RNAs recruit ribosomes are poorly understood, and for many viruses the CITE is unknown. Here we identify the first CITE of an umbravirus in the 3′-untranslated region of pea enation mosaic virus RNA 2. Chemical and enzymatic probing of the ∼100-nucleotide PEMV RNA 2 CITE (PTE), and mutagenesis revealed that it forms a long, bulged helix that branches into two short stem-loops, with a possible pseudoknot interaction between a C-rich bulge at the branch point and a G-rich bulge in the main helix. The PTE inhibited translation in trans, and addition of eIF4F, but not eIFiso4F, restored translation. Filter binding assays revealed that the PTE binds eIF4F and its eIF4E subunit with high affinity. Tight binding required an intact cap-binding pocket in eIF4E. Among many PTE mutants, there was a strong correlation between PTE-eIF4E binding affinity and ability to stimulate cap-independent translation. We conclude that the PTE recruits eIF4F by binding eIF4E. The PTE represents a different class of translation enhancer element, as defined by its structure and ability to bind eIF4E in the absence of an m7G cap.


PLOS Pathogens | 2015

Discovery of a Small Non-AUG-Initiated ORF in Poleroviruses and Luteoviruses That Is Required for Long-Distance Movement.

Ekaterina A. Smirnova; Andrew E. Firth; W. Allen Miller; Danièle Scheidecker; Véronique Brault; Catherine Reinbold; Aurélie M. Rakotondrafara; Betty Y.-W. Chung; Véronique Ziegler-Graff

Viruses in the family Luteoviridae have positive-sense RNA genomes of around 5.2 to 6.3 kb, and they are limited to the phloem in infected plants. The Luteovirus and Polerovirus genera include all but one virus in the Luteoviridae. They share a common gene block, which encodes the coat protein (ORF3), a movement protein (ORF4), and a carboxy-terminal extension to the coat protein (ORF5). These three proteins all have been reported to participate in the phloem-specific movement of the virus in plants. All three are translated from one subgenomic RNA, sgRNA1. Here, we report the discovery of a novel short ORF, termed ORF3a, encoded near the 5’ end of sgRNA1. Initially, this ORF was predicted by statistical analysis of sequence variation in large sets of aligned viral sequences. ORF3a is positioned upstream of ORF3 and its translation initiates at a non-AUG codon. Functional analysis of the ORF3a protein, P3a, was conducted with Turnip yellows virus (TuYV), a polerovirus, for which translation of ORF3a begins at an ACG codon. ORF3a was translated from a transcript corresponding to sgRNA1 in vitro, and immunodetection assays confirmed expression of P3a in infected protoplasts and in agroinoculated plants. Mutations that prevent expression of P3a, or which overexpress P3a, did not affect TuYV replication in protoplasts or inoculated Arabidopsis thaliana leaves, but prevented virus systemic infection (long-distance movement) in plants. Expression of P3a from a separate viral or plasmid vector complemented movement of a TuYV mutant lacking ORF3a. Subcellular localization studies with fluorescent protein fusions revealed that P3a is targeted to the Golgi apparatus and plasmodesmata, supporting an essential role for P3a in viral movement.


Nature Biotechnology | 2014

Toxin delivery by the coat protein of an aphid-vectored plant virus provides plant resistance to aphids

Bryony C. Bonning; Narinder Pal; Sijun Liu; Zhaohui Wang; S. Sivakumar; Philip M. Dixon; Glenn F. King; W. Allen Miller

The sap-sucking insects (order Hemiptera), including aphids, planthoppers, whiteflies and stink bugs, present one of the greatest challenges for pest management in global agriculture. Insect neurotoxins offer an alternative to chemical insecticides for controlling these pests, but require delivery into the insect hemocoel. Here we use the coat protein of a luteovirus, an aphid-vectored plant virus, to deliver a spider-derived, insect-specific toxin that acts within the hemocoel. The luteovirid coat protein is sufficient for delivery of fused proteins into the hemocoel of pea aphids, Acyrthosiphon pisum, without virion assembly. We show that when four aphid pest species—A. pisum, Rhopalosiphum padi, Aphis glycines and Myzus persicae—feed on a recombinant coat protein–toxin fusion, either in an experimental membrane sachet or in transgenic Arabidopsis plants, they experience significant mortality. Aphids fed on these fusion proteins showed signs of neurotoxin-induced paralysis. Luteovirid coat protein–insect neurotoxin fusions represent a promising strategy for transgenic control of aphids and potentially other hemipteran pests.

Collaboration


Dive into the W. Allen Miller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sijun Liu

Iowa State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge