Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Brent Edwards is active.

Publication


Featured researches published by W. Brent Edwards.


Medicine and Science in Sports and Exercise | 2009

Effects of stride length and running mileage on a probabilistic stress fracture model.

W. Brent Edwards; David Taylor; Thomas J. Rudolphi; Jason C. Gillette; Timothy R. Derrick

UNLABELLED The fatigue life of bone is inversely related to strain magnitude. Decreasing stride length is a potential mechanism of strain reduction during running. If stride length is decreased, the number of loading cycles will increase for a given mileage. It is unclear if increased loading cycles are detrimental to skeletal health despite reductions in strain. PURPOSE To determine the effects of stride length and running mileage on the probability of tibial stress fracture. METHODS Ten male subjects ran overground at their preferred running velocity during two conditions: preferred stride length and 10% reduction in preferred stride length. Force platform and kinematic data were collected concurrently. A combination of experimental and musculoskeletal modeling techniques was used to determine joint contact forces acting on the distal tibia. Peak instantaneous joint contact forces served as inputs to a finite element model to estimate tibial strains during stance. Stress fracture probability for stride length conditions and three running mileages (3, 5, and 7 miles x d(-1)) were determined using a probabilistic model of bone damage, repair, and adaptation. Differences in stress fracture probability were compared between conditions using a 2 x 3 repeated-measures ANOVA. RESULTS The main effects of stride length (P = 0.017) and running mileage (P = 0.001) were significant. Reducing stride length decreased the probability of stress fracture by 3% to 6%. Increasing running mileage increased the probability of stress fracture by 4% to 10%. CONCLUSIONS Results suggest that strain magnitude plays a more important role in stress fracture development than the total number of loading cycles. Runners wishing to decrease their probability for tibial stress fracture may benefit from a 10% reduction in stride length.


Clinical Biomechanics | 2008

Internal femoral forces and moments during running: Implications for stress fracture development

W. Brent Edwards; Jason C. Gillette; Joshua M. Thomas; Timothy R. Derrick

BACKGROUND Femoral stress fractures tend to occur at the neck, medial proximal-shaft, and distal-shaft. The purpose of this study was to determine the internal femoral forces and moments during running. It was expected that larger loads would occur at these common sites of femoral stress fracture. METHODS Ten subjects ran at their preferred running speed over a force platform while motion capture data were collected. Static optimization in conjunction with a SIMM musculoskeletal model was used to determine individual muscle forces of the lower extremity. Joint contact forces were determined, and a quasi-static approach was used to calculate internal forces and moments along a centroid path through the femur. FINDINGS The largest mean peak loads were observed at the following regions: anterior-posterior shear, 7.47 bodyweights (BW) at the distal-shaft (posteriorly directed); axial force, 11.40BW at the distal-shaft (compression); medial-lateral shear, 3.75BW at the neck (medially directed); anterior-posterior moment, 0.42BWm at the proximal-shaft (medial surface compression); torsional moment, 0.20BWm at the distal-shaft (external rotation); medial-lateral moment, 0.44BWm at the distal-shaft (anterior surface compression). INTERPRETATION The mechanical loading environment of the femur during running appears to explain well the redundancy in femoral stress fracture location. We observed the largest internal loads at the three femoral sites prone to stress fracture.


Clinical Biomechanics | 2010

Effects of running speed on a probabilistic stress fracture model.

W. Brent Edwards; David Taylor; Thomas J. Rudolphi; Jason C. Gillette; Timothy R. Derrick

BACKGROUND Stress fractures are dependent on both loading magnitude and loading exposure. Decreasing speed is a potential mechanism of strain reduction during running. However, if running speed is decreased the number of loading cycles will increase for a given mileage. It is unclear if these increased loading cycles are detrimental despite reductions in bone strain. The purpose of this study was to determine the effects of running speed on the probability of tibial stress fracture during a new running regimen. METHODS Ten male subjects ran overground at 2.5, 3.5, and 4.5m/s. Force platform and kinematic data were collected synchronously. Inverse dynamics and musculoskeletal modeling were used to determine joint contact forces acting on the distal tibia. Peak tibial contact force served as input to a finite element model to estimate tibial strains. Stress fracture probability for each running speed was determined using a probabilistic model based on published relationships of bone damage, repair, and adaptation. The effects of speed on stress fracture probability was compared using a repeated measures ANOVA. FINDINGS Decreasing running speed from 4.5 to 3.5m/s reduced the estimated likelihood for stress fracture by 7% (P=0.017). Decreasing running speed from 3.5 to 2.5m/s further reduced the likelihood for stress fracture by 10% (P<0.001). INTERPRETATION Runners wanting to reduce their risk for tibial stress fracture may benefit from a decrease in running speed. For the speeds and mileage relative to the current study, stress fracture development was more dependent on loading magnitude rather than loading exposure.


Medicine and Science in Sports and Exercise | 2009

Patellofemoral joint force and stress during the wall squat and one-leg squat.

Rafael F. Escamilla; Naiquan Zheng; Toran D. MacLeod; W. Brent Edwards; Rodney Imamura; Alan Hreljac; Glenn S. Fleisig; Kevin E. Wilk; Claude T. Moorman; James R. Andrews

PURPOSE To compare patellofemoral compressive force and stress during the one-leg squat and two variations of the wall squat. METHODS Eighteen subjects used their 12 repetition maximum (12 RM) weight while performing the wall squat with the feet closer to the wall (wall squat short), the wall squat with the feet farther away from the wall (wall squat long), and the one-leg squat. EMG, force platform, and kinematic variables were input into a biomechanical model to calculate patellofemoral compressive force and stress as a function of knee angle. To asses differences among exercises, a one-factor repeated-measure ANOVA (P = 0.0025) was used. RESULTS During the squat ascent, there were significant differences in patellofemoral force and stress among the three squat exercises at 90 degrees knee angle (P = 0.002), 80 degrees knee angle (P = 0.002), 70 degrees knee angle (P < 0.001), and 60 degrees knee angle (P = 0.001). Patellofemoral force and stress were significantly greater at 90 degrees knee angle in the wall squat short compared with wall squat long and one-leg squat, significantly greater at 70 degrees and 80 degrees knee angles in the wall squat short and long compared with the one-leg squat and significantly greater at 60 degrees knee angle in the wall squat long compared with the wall squat short and one-leg squat. CONCLUSIONS Except at 60 degrees and 90 degrees knee angles, patellofemoral compressive force and stress were similar between the wall squat short and the wall squat long. Between 60 degrees and 90 degrees knee angles, wall squat exercises generally produced greater patellofemoral compressive force and stress compared with the one-leg squat. When the goal is to minimize patellofemoral compressive force and stress, it may be prudent to use a smaller knee angle range between 0 degrees and 50 degrees compared with a larger knee angle range between 60 degrees and 90 degrees .


Medicine and Science in Sports and Exercise | 2009

Cruciate ligament force during the wall squat and the one-leg squat.

Rafael F. Escamilla; Naiquan Zheng; Rodney Imamura; Toran D. MacLeod; W. Brent Edwards; Alan Hreljac; Glenn S. Fleisig; Kevin E. Wilk; Claude T. Moorman; James R. Andrews

PURPOSE To compare cruciate ligament forces during wall squat and one-leg squat exercises. METHODS Eighteen subjects performed the wall squat with feet closer to the wall (wall squat short), the wall squat with feet farther from the wall (wall squat long), and the one-leg squat. EMG, force, and kinematic variables were input into a biomechanical model using optimization. A three-factor repeated-measure ANOVA (P < 0.05) with planned comparisons was used. RESULTS Mean posterior cruciate ligament (PCL) forces were significantly greater in 1) wall squat long compared with wall squat short (0 degrees -80 degrees knee angles) and one-leg squat (0 degrees -90 degrees knee angles); 2) wall squat short compared with one-leg squat between 0 degrees -20 degrees and 90 degrees knee angles; 3) wall squat long compared with wall squat short (70 degrees -0 degrees knee angles) and one-leg squat (90 degrees -60 degrees and 20 degrees -0 degrees knee angles); and 4) wall squat short compared with one-leg squat between 90 degrees -70 degrees and 0 degrees knee angles. Peak PCL force magnitudes occurred between 80 degrees and 90 degrees knee angles and were 723 +/- 127 N for wall squat long, 786 +/- 197 N for wall squat short, and 414 +/- 133 N for one-leg squat. Anterior cruciate ligament (ACL) forces during one-leg squat occurred between 0 degrees and 40 degrees knee angles, with a peak magnitude of 59 +/- 52 N at 30 degrees knee angle. Quadriceps force ranged approximately between 30 and 720 N, whereas hamstring force ranged approximately between 15 and 190 N. CONCLUSIONS Throughout the 0 degrees -90 degrees knee angles, the wall squat long generally exhibited significantly greater PCL forces compared with the wall squat short and one-leg squat. PCL forces were similar between the wall squat short and the one-leg squat. ACL forces were generated only in the one-leg squat. All exercises appear to load the ACL and the PCL within a safe range in healthy individuals.


Clinical Biomechanics | 2008

Patellofemoral compressive force and stress during the forward and side lunges with and without a stride.

Rafael F. Escamilla; Naiquan Zheng; Toran D. MacLeod; W. Brent Edwards; Alan Hreljac; Glenn S. Fleisig; Kevin E. Wilk; Claude T. Moorman; Rodney Imamura

BACKGROUND Although weight bearing lunge exercises are frequently employed during patellofemoral rehabilitation, patellofemoral compressive force and stress are currently unknown for these exercises. METHODS Eighteen subjects used their 12 repetition maximum weight while performing forward and side lunges with and without a stride. EMG, force platform, and kinematic variables were input into a biomechanical model, and patellofemoral compressive force and stress were calculated as a function of knee angle. FINDINGS Patellofemoral force and stress progressively decreased as knee flexion increased and progressively increased as knee flexion decreased. Patellofemoral force and stress were greater in the side lunge compared to the forward lunge between 80 degrees and 90 degrees knee angles, and greater with a stride compared to without a stride between 10 degrees and 50 degrees knee angles. There were no significant interactions between lunge variations and stride variations. INTERPRETATION A more functional knee flexion range between 0 degrees and 50 degrees may be appropriate during the early phases of patellofemoral rehabilitation due to lower patellofemoral compressive force and stress during this range compared to higher knee angles between 60 degrees and 90 degrees. Moreover, when the goal is to minimize patellofemoral compressive force and stress, it may be prudent to employ forward and side lunges without a stride compared to with a stride, especially at lower knee angles between 0 degrees and 50 degrees. Understanding differences in patellofemoral compressive force and stress among lunge variations may help clinicians prescribe safer and more effective exercise interventions.


Journal of Orthopaedic & Sports Physical Therapy | 2008

Patellofemoral Joint Force and Stress Between a Short- and Long-Step Forward Lunge

Rafael F. Escamilla; Naiquan Zheng; Toran D. MacLeod; W. Brent Edwards; Alan Hreljac; Glenn S. Fleisig; Kevin E. Wilk; Claude T. Moorman; Rodney Imamura; James R. Andrews

STUDY DESIGN Controlled laboratory biomechanics study using a repeated-measures, counterbalanced design. OBJECTIVES To compare patellofemoral joint force and stress between a short- and long-step forward lunge both with and without a stride. BACKGROUND Although weight-bearing forward-lunge exercises are frequently employed during rehabilitation for individuals with patellofemoral joint syndrome, patellofemoral joint force and stress and how they change with variations of the lunge exercise are currently unknown. METHODS AND MEASURES Eighteen subjects used their 12-repetition maximum weight while performing a short- and long-step forward lunge both with and without a stride. Electromyography, ground reaction force, and kinematic variables were put into a biomechanical optimization model, and patellofemoral joint force and stress were calculated as a function of knee angle. RESULTS Visual observation of the data show that during the forward lunge, patellofemoral joint force and stress increased progressively as knee flexion increased, and decreased progressively as knee flexion decreased. Between 70 degrees and 90 degrees of knee flexion, patellofemoral joint force and stress were significantly greater when performing a forward lunge with a short step compared to a long step (P<.025). Between 10 degrees and 40 degrees of knee flexion, patellofemoral joint force and stress were significantly greater when performing a forward lunge with a stride compared to without a stride (P<.025). CONCLUSIONS When the goal is to minimize patellofemoral joint force and stress during the forward lunge performed between 0 degrees to 90 degrees knee angles, it may be prudent to perform the lunge with a long step compared to a short step and without a stride compared to with a stride, because patellofemoral joint force and stress magnitudes were greater with a short step compared to a long step at higher knee flexion angles and were greater with a stride compared to without a stride at lower knee flexion angles.


Medicine and Science in Sports and Exercise | 2010

Cruciate ligament forces between short-step and long-step forward lunge.

Rafael F. Escamilla; Naiquan Zheng; Toran D. MacLeod; Rodney Imamura; W. Brent Edwards; Alan Hreljac; Glenn S. Fleisig; Kevin E. Wilk; Claude T. Moorman; Lonnie Paulos; James R. Andrews

PURPOSE The purpose of this study was to compare cruciate ligament forces between the forward lunge with a short step (forward lunge short) and the forward lunge with a long step (forward lunge long). METHODS Eighteen subjects used their 12-repetition maximum weight while performing the forward lunge short and long with and without a stride. EMG, force, and kinematic variables were input into a biomechanical model using optimization, and cruciate ligament forces were calculated as a function of knee angle. A two-factor repeated-measure ANOVA was used with a Bonferroni adjustment (P < 0.0025) to assess differences in cruciate forces between lunging techniques. RESULTS Mean posterior cruciate ligament (PCL) forces (69-765 N range) were significantly greater (P < 0.001) in the forward lunge long compared with the forward lunge short between 0 degrees and 80 degrees knee flexion angles. Mean PCL forces (86-691 N range) were significantly greater (P < 0.001) without a stride compared with those with a stride between 0 degrees and 20 degrees knee flexion angles. Mean anterior cruciate ligament (ACL) forces were generated (0-50 N range between 0 degrees and 10 degrees knee flexion angles) only in the forward lunge short with stride. CONCLUSIONS All lunge variations appear appropriate and safe during ACL rehabilitation because of minimal ACL loading. ACL loading occurred only in the forward lunge short with stride. Clinicians should be cautious in prescribing forward lunge exercises during early phases of PCL rehabilitation, especially at higher knee flexion angles and during the forward lunge long, which generated the highest PCL forces. Understanding how varying lunging techniques affect cruciate ligament loading may help clinicians prescribe lunging exercises in a safe manner during ACL and PCL rehabilitation.


Journal of Bone and Mineral Research | 2014

Reduction in Proximal Femoral Strength in Patients With Acute Spinal Cord Injury

W. Brent Edwards; Thomas J. Schnitzer; Karen L. Troy

Bone loss after spinal cord injury (SCI) is associated with an increased risk of fracture resulting from minor trauma. Proximal femoral fractures account for approximately 10% to 20% of the fractures in this population and are among the most serious of injuries. Our purpose was to quantify changes to proximal femoral strength in patients with acute SCI. Thirteen subjects received dual‐energy X‐ray absorptiometry (DXA) and clinical computed tomography (CT) scans at serial time points during acute SCI separated by a mean of 3.5 months (range 2.6 to 4.8 months). Areal bone mineral density (aBMD) at the proximal femur was quantified from DXA, and proximal femoral strength was predicted using CT‐based finite element (FE) modeling in a sideways fall configuration. During the acute period of SCI, femoral neck and total proximal femur aBMD decreased by 2.0 ± 1.1%/month (p < 0.001) and 2.2 ± 0.7%/month (p < 0.001), respectively. The observed reductions in aBMD were associated with a 6.9 ± 2.0%/month (p < 0.001) reduction in femoral strength. Thus, changes in femoral strength were some 3 times greater than the observed changes in aBMD (p < 0.001). It was interesting to note that in just 3.5 months of acute SCI, reductions in strength for some patients were on the order of that predicted for lifetime declines owing to aging. Therefore, it is important that therapeutic interventions are implemented soon after SCI in an effort to halt bone loss and decrease fracture risk. In addition, clinicians utilizing DXA to monitor bone health after SCI should be aware of the potential discrepancy between changes in aBMD and strength.


European Journal of Applied Physiology | 2016

Fatigue associated with prolonged graded running

Marlène Giandolini; Gianluca Vernillo; Pierre Samozino; Nicolas Horvais; W. Brent Edwards; Jean-Benoît Morin; Guillaume Y. Millet

Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, ‘pure’ uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation–contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed.

Collaboration


Dive into the W. Brent Edwards's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alan Hreljac

California State University

View shared research outputs
Top Co-Authors

Avatar

Rafael F. Escamilla

American Sports Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Rodney Imamura

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Glenn S. Fleisig

American Sports Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin E. Wilk

American Sports Medicine Institute

View shared research outputs
Top Co-Authors

Avatar

Naiquan Zheng

University of North Carolina at Charlotte

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge