W. Bret Church
University of Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Bret Church.
FEBS Journal | 2010
Denise M.T. Yu; Tsun-Wen Yao; Sumaiya Chowdhury; Naveed A. Nadvi; Brenna Osborne; W. Bret Church; Geoffrey W. McCaughan; Mark D. Gorrell
Of the 600+ known proteases identified to date in mammals, a significant percentage is involved or implicated in pathogenic and cancer processes. The dipeptidyl peptidase IV (DPIV) gene family, comprising four enzyme members [DPIV (EC 3.4.14.5), fibroblast activation protein, DP8 and DP9] and two nonenzyme members [DP6 (DPL1) and DP10 (DPL2)], are interesting in this regard because of their multiple diverse functions, varying patterns of distribution/localization and subtle, but significant, differences in structure/substrate recognition. In addition, their engagement in cell biological processes involves both enzymatic and nonenzymatic capabilities. This article examines, in detail, our current understanding of the biological involvement of this unique enzyme family and their overall potential as therapeutic targets.
Immunological Reviews | 2000
Geoffrey W. McCaughan; Mark D. Gorrell; G. Alex Bishop; Catherine A. Abbott; Nicholas A. Shackel; Peter H. McGuinness; Miriam T. Levy; Alexandra F. Sharland; David G. Bowen; Denise M.T. Yu; Loubnah Slaitini; W. Bret Church; John Napoli
Acknowledgments:
Journal of Biological Chemistry | 2011
Geoffrey K. Broadhead; Hee-Chang Mun; Vimesh A. Avlani; Orane Jourdon; W. Bret Church; Arthur Christopoulos; Leigh Delbridge; Arthur D. Conigrave
γ-Glutamyl peptides were identified previously as novel positive allosteric modulators of Ca2+o-dependent intracellular Ca2+ mobilization in HEK-293 cells that bind in the calcium-sensing receptor VFT domain. In the current study, we investigated whether γ-glutamyl-tripeptides including γ-Glu-Cys-Gly (glutathione) and its analogs S-methylglutathione and S-propylglutathione, or dipeptides including γ-Glu-Ala and γ-Glu-Cys are positive allosteric modulators of Ca2+o-dependent Ca2+i mobilization and PTH secretion from normal human parathyroid cells as well as Ca2+o-dependent suppression of intracellular cAMP levels in calcium-sensing receptor (CaR)-expressing HEK-293 cells. In addition, we compared the effects of the potent γ-glutamyl peptide S-methylglutathione, and the amino acid l-Phe on HEK-293 cells that stably expressed either the wild-type CaR or the double mutant T145A/S170T, which exhibits selectively impaired responses to l-amino acids. We find that γ-glutamyl peptides are potent positive allosteric modulators of the CaR that promote Ca2+o-dependent Ca2+i mobilization, suppress intracellular cAMP levels and inhibit PTH secretion from normal human parathyroid cells. Furthermore, we find that the double mutant T145A/S170T exhibits markedly impaired Ca2+i mobilization and cAMP suppression responses to S-methylglutathione as well as l-Phe indicating that γ-glutamyl peptides and l-amino acids activate the CaR via a common mechanism.γ-Glutamyl peptides were identified previously as novel positive allosteric modulators of Ca(2+)(o)-dependent intracellular Ca(2+) mobilization in HEK-293 cells that bind in the calcium-sensing receptor VFT domain. In the current study, we investigated whether γ-glutamyl-tripeptides including γ-Glu-Cys-Gly (glutathione) and its analogs S-methylglutathione and S-propylglutathione, or dipeptides including γ-Glu-Ala and γ-Glu-Cys are positive allosteric modulators of Ca(2+)(o)-dependent Ca(2+)(i) mobilization and PTH secretion from normal human parathyroid cells as well as Ca(2+)(o)-dependent suppression of intracellular cAMP levels in calcium-sensing receptor (CaR)-expressing HEK-293 cells. In addition, we compared the effects of the potent γ-glutamyl peptide S-methylglutathione, and the amino acid L-Phe on HEK-293 cells that stably expressed either the wild-type CaR or the double mutant T145A/S170T, which exhibits selectively impaired responses to L-amino acids. We find that γ-glutamyl peptides are potent positive allosteric modulators of the CaR that promote Ca(2+)(o)-dependent Ca(2+)(i) mobilization, suppress intracellular cAMP levels and inhibit PTH secretion from normal human parathyroid cells. Furthermore, we find that the double mutant T145A/S170T exhibits markedly impaired Ca(2+)(i) mobilization and cAMP suppression responses to S-methylglutathione as well as L-Phe indicating that γ-glutamyl peptides and L-amino acids activate the CaR via a common mechanism.
Proteins | 1999
Beth Ann Thomas; W. Bret Church; Terry R. Lane; Bruce D. Hammock
Juvenile Hormone Esterase (JHE) plays an essential role in the development of insects since it is partially responsible for clearing juvenile hormone (JH), one of the hormones that is responsible for insect metamorphosis. JHE is a 60 kDa enzyme that selectively hydrolyzes the α/β unsaturated ester of JH. Because of its pivotal role in insect development, we have targeted JHE for use as a biopesticide. In this study, we have constructed a homology‐based molecular model of JHE from the agricultural crop pest, Heliothis virescens. JHE is a member of the α/β hydrolase fold family of enzymes and was built according to two structures in the same family: acetylcholinesterase from Torpedo californica and lipase from Geotrichum candidum. Analysis of the active site region reveals extensive conservation between JHE and its templates. A surprise was the presence of a conserved Ser near the catalytic triad. Docking of JH III into the active site has provided insight into protein‐substrate interactions that are corroborated by experimental observation. The model is being used as a predictive basis to design biopesticides. In this regard, we have identified a site on the protein surface that is suggestive of a recognition site for the putative JHE receptor. Proteins 1999; 34:184–196.
British Journal of Pharmacology | 2010
Fanfan Zhou; Ling Zhu; Pei H. Cui; W. Bret Church; Michael Murray
Background and purpose: The human organic anion transporter (hOAT) family of transmembrane carrier proteins mediate the cellular flux of anionic substances, including certain hormones and anti‐cancer drugs. hOAT4 is highly expressed at the apical membrane of the renal tubular cell and facilitates drug re‐absorption in the kidney. In the present study, the impact of 10 nonsynonymous single nucleotide polymorphisms (SNPs) of hOAT4 on transport function in COS‐7 cells was characterized.
The Open Enzyme Inhibition Journal | 2008
Joohong Park; Heather M. Knott; Naveed A. Nadvi; Charles A. Collyer; Xin M. Wang; W. Bret Church; Mark D. Gorrell
Hydrogen peroxide (H2O2) can act as an intracellular messenger by oxidizing sulfhydryl groups in cysteines that can be oxidized at neutral pH. The oxidizing agents H2O2 and pyrroloquinoline quinone and the large thiol reagents N-ethylmaleimide and 4-(hydroxymercuri) benzoate each inhibited dipeptidyl peptidase (DP) activity in the intracellular DPIV-related proteins DP8 and DP9 at pH 7.5. In contrast, these treatments did not alter activity in DPIV and fibroblast activation protein. Peptidase inhibition was completely reversed by 2-mercaptoethanol or reduced glutathione. Alkylation of DP8 by the small thiol reagent iodoacetamide prevented inhibition by H2O2, N-ethylmaleimide or pyrroloquinoline qui- none. Two cysteines were reactive per peptidase monomer. We exploited these properties to highly purify DP8 by thiol affinity chromatography. Homology modelling of DP8 and DP9 was consistent with the proposal that the mechanism in- volves decreased protein flexibility caused by intramolecular disulfide bonding. These novel data show that DP8 and DP9 are reversibly inactivated by oxidants at neutral pH and suggest that DP8 and DP9 are H2O2 sensing proteins.
Aaps Journal | 2013
Fanfan Zhou; Jian Zheng; Ling Zhu; Andreas Jodal; Pei H. Cui; Mark Wong; Howard Gurney; W. Bret Church; Michael Murray
The solute carrier organic anion transporting polypeptide 1A2 (OATP1A2, SLCO1A2) is implicated in the cellular influx of a number of drugs. We identified five novel single nucleotide polymorphisms (SNPs) in coding exons of the SLCO1A2 gene in a cohort of subjects: G550A, G553A, G673A, A775C, and G862A, that encoded the OATP1A2 variants E184K, D185N, V255I, T259P, and D288N, respectively. The function and expression of these variant transporters were assessed in HEK-293 cells. We found that the novel variants, E184K, D185N, T259P, and D288N, were associated with impaired estrone-3-sulfate, imatinib, and methotrexate transport (∼20–50% of wild-type control); function was retained by OATP1A2-V255I. From biotinylation assays, the decreased function of these variants was due, at least in part, to impaired plasma membrane expression. The four loss-of-function variants were studied further using mutagenesis to produce variants that encode residues with different charges or steric properties. From immunoblotting, the replacement of negatively charged residues at amino acid positions 184 and 185 impaired membrane expression, while either a positive or negative charge at residue 288 supported the correct membrane targeting of OATP1A2. Replacement of T259 with bulky residues disrupted transporter stability. From molecular models, E184, D185, and D288 were located near several charged residues such that intramolecular ionic interactions may stabilize the transporter structure. Individuals who carry these novel SNPs in the SLCO1A2 gene may be at risk from impaired efficacy or enhanced toxicity during treatment with drugs that are substrates for OATP1A2.
Advanced Drug Delivery Reviews | 2012
Tim Werner; Michael B. Morris; Siavoush Dastmalchi; W. Bret Church
Proteins are the workhorses of biomolecules and their function is affected by their structure and their structural rearrangements during ligand entry, ligand binding and protein-protein interactions. Hence, the knowledge of protein structure and, importantly, the dynamic behaviour of the structure are critical for understanding how the protein performs its function. The predictions of the structure and the dynamic behaviour can be performed by combinations of structure modelling and molecular dynamics simulations. The simulations also need to be sensitive to the constraints of the environment in which the protein resides. Standard computational methods now exist in this field to support the experimental effort of solving protein structures. This review presents a comprehensive overview of the basis of the calculations and the well-established computational methods used to generate and understand protein structure and function and the study of their dynamic behaviour with the reference to lung-related targets.
Immunology and Cell Biology | 2006
Garry W. Lynch; Stuart Turville; Brooke Carter; Andrew J. Sloane; Albert Chan; Nick Muljadi; Shan Li; Loretta Low; Patricia J. Armati; Robert L. Raison; Hans Zoellner; Peter Williamson; Anthony L. Cunningham; W. Bret Church
The structures, molecular interactions and functions of CD4 in a subset of T lymphocytes have been well characterized. The CD4 receptors of other cell types have, however, been poorly documented. We have previously shown that lymphocytes and monocytes/macrophages differ in their expression of CD4 monomers and dimers. In the present study, we have shown further significant differences. Variability in the blocking of CD4 mAb binding by sulfated polyanions indicated differences in exofacial CD4 structures. In contrast to the well‐documented 55 kDa monomers in lymphocytic cells, monocytic cells were found to coexpress two monomer isoforms: the 55 kDa form and a novel 59 kDa species. Experimental uncoupling of CD4 disulfides indicated that the oxidized 55 kDa monomer could be converted to the 59 kDa form. This was achieved by chemical reduction of purified native or recombinant CD4, or in cell transfection experiments by mutation of cysteine to alanine in domain 1 (D1) (Cys16 or Cys84) and in domain 4 (D4) (Cys303 or Cys345). All of these modifications promote CD4 distension on SDS–PAGE analysis and indicate that, when CD4 inter‐β‐sheet disulfides in the D1 and D4 Ig folds are disrupted, there is an unravelling of the oxidized form to an extended 59 kDa unfolded state. We hypothesize that this may be a transition‐state, structural‐intermediate in the formation of disulfide‐linked homodimers. Also identified were CD4‐tyrosine kinase dissimilarities in which lymphocyte CD4 associated with Lck, but monocyte CD4 associated with HcK. These findings show that there is complex heterogeneity in structures and interactions in the CD4 of T lymphocytes and monocytes.
Journal of Biological Chemistry | 2011
Katherine J. Bryant; Matthew J. Bidgood; Pei Wen Lei; Megan Taberner; Caroline Salom; Vinod Kumar; Lawrence Lee; W. Bret Church; Brett G. Courtenay; Brian P. Smart; Michael H. Gelb; Michael A. Cahill; Garry G. Graham; H. Patrick McNeil; Kieran F. Scott
Human group IIA-secreted phospholipase A2 (sPLA2-IIA) is an important regulator of cytokine-mediated inflammatory responses in both in vitro and in vivo models of rheumatoid arthritis (RA). However, treatment of RA patients with sPLA2-IIA inhibitors shows only transient benefit. Using an activity-impaired sPLA2-IIA mutant protein (H48Q), we show that up-regulation of TNF-dependent PGE2 production and cyclooxygenase-2 (COX-2) induction by exogenous sPLA2-IIA in RA fibroblast-like synoviocytes (FLSs) is independent of its enzyme function. Selective cytosolic phospholipase A2-α (cPLA2-α) inhibitors abrogate TNF/sPLA2-IIA-mediated PGE2 production without affecting COX-2 levels, indicating arachidonic acid (AA) flux to COX-2 occurs exclusively through TNF-mediated activation of cPLA2-α. Nonetheless, exogenous sPLA2-IIA, but not H48Q, stimulates both AA mobilization from FLSs and microparticle-derived AA release that is not used for COX-2-dependent PGE2 production. sPLA2-IIA-mediated AA production is inhibited by pharmacological blockade of sPLA2-IIA but not cPLA2-α. Exogenous H48Q alone, like sPLA2-IIA, increases COX-2 protein levels without inducing PGE2 production. Unlike TNF, sPLA2-IIA alone does not rapidly mobilize NF-κB or activate phosphorylation of p38 MAPK, two key regulators of COX-2 protein expression, but does activate the ERK1/2 pathway. Thus, sPLA2-IIA regulates AA flux through the cPLA2-α/COX-2 pathway in RA FLSs by up-regulating steady state levels of these biosynthetic enzymes through an indirect mechanism, rather than direct provision of substrate to the pathway. Inhibitors that have been optimized for their potency in enzyme activity inhibition alone may not adequately block the activity-independent function of sPLA2-IIA.