W. D'Hollander
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. D'Hollander.
Chemosphere | 2010
W. D'Hollander; Laurence Roosens; Adrian Covaci; Christa Cornelis; Hans Reynders; K. Van Campenhout; W.P. de Voogt; Lieven Bervoets
The increasing time spent indoors combined with the abundant usage of diverse indoor chemicals led to concerns involving the impact of these compounds on human health. The current study focused on two groups of important indoor contaminants i.e. Brominated flame retardants (BFRs) and Perfluorinated compounds (PFCs). Concentrations of both compound classes have been measured in Flemish indoor dust samples from homes and offices. ΣPolybrominated diphenyl ethers (PBDEs) (BDE 47, 99, 100, 154, 153, 197, 196 and 203) and BDE 209 in homes ranged between 4-1214 ng g(-1)dw (median 35) and <5-5295 ng g(-1)dw (median 313), respectively. Hexabromocyclododecane (ΣHBCD) levels ranged from 5 to 4,2692 ng g(-1)dw (median 130), with α-HBCD being the major isomer (mean 59%). In addition, tetrabromobisphenol A (TBBPA) ranged between <3 and 419 ng g(-1)dw (median 12). For all BFRs, median levels in office dust were up to an order of magnitude higher than in home dust. ΣPFCs (sum of perfluorobutane sulfonate (PFBS), perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA) and perfluorodecanoic acid (PFDA)) concentrations in homes ranged from 0.2 to 336 ng g(-1) (median 3.0 ng g(-1)). Levels in office dust were higher (p<0.01) than in house dust with ΣPFCs ranging between 2.2 and 647 ng g(-1) (median 10 ng g(-1)) and median (PFOA) and perfluorooctane sulfonate values of 2.9 and 2.2 ng g(-1), respectively. The congener pattern was dominated by PFOA, followed by PFOS. Calculated human exposure was below the reference dose values set by the US-EPA for BDE 209, HBCD and below the provisional tolerable daily intakes proposed by European Food Safety Authority for PFOS and PFOA.
Environment International | 2010
Laurence Roosens; Christa Cornelis; W. D'Hollander; Lieven Bervoets; Hans Reynders; Karen Van Campenhout; Rosette Van Den Heuvel; Hugo Neels; Adrian Covaci
Human exposure to brominated flame retardants (BFRs) varies widely throughout the world as it depends on country-related usage, production and legislation of these chemicals. US and UK exposure assessments show very diverse levels and patterns which in turn, are likely to differ from those in background exposed countries such as Belgium, where levels tend to be about an order of magnitude lower. The current study assessed human exposure to BFRs through the indoor and outdoor environment (e.g. dust, soil, and air) and food for all age groups in Flanders, Belgium. Most relevant food groups were identified based on a national food consumption survey and food items with Flemish origin were collected. Dust samples were collected using a standardized protocol in 43 homes and 10 offices throughout Flanders. Food, human milk and dust samples were analysed for their polybrominated diphenylethers (PBDE) and hexabromocyclodecane (HBCD) content using GC/MS and LC/MS-MS. An exposure model was developed including all analysed data, complemented with literature data. The model covered human exposure of infants, children and adults through human milk, food, dust/soil ingestion and air inhalation. Total human exposure was compared to the existing toxicological criteria and previous exposure estimates. In general, the exposure levels through human milk are consistent with those of a background exposed European population, whereas dust and food intake are at the low end of what has been reported in previous European intake assessments. Total average intake of SigmaHBCD and SigmaBDE(5) at 50th percentile (P50) levels by newborns equals 3.1 and 12.0ng/kg body weight (bw) day, respectively. This intake increases to 15.2 and 20.9ng/kgbwday for SigmaHBCD and SigmaBDE(5), for higher exposed newborns (95th percentile=P95 levels). Due to the limited database on health-based limit values for PBDEs and HBCD, it is difficult to assess the immediate health concern for any of the age groups, although the higher intake of newborns indicates the need for ongoing monitoring. For median exposed individuals, the average SigmaHBCD intake peaked at the age 3 to 6years with an intake of 6.59ng/kgbwday and declines to approximately 1ng/kgbwday at later age. SigmaBDE(5) intake exhibited a different profile compared to SigmaHBCD with maximal levels for newborns and a decline to approximately 0.7ng/kgbwday at adulthood.
Chemosphere | 2015
Gianfranco Brambilla; W. D'Hollander; Fardin Oliaei; Thorsten Stahl; Roland Weber
Perfluorooctanesulfonic acid (PFOS) and related substances have been listed in Annex B of the Stockholm Convention. The implementation requires inventories of use, stockpiles, and environmental contamination including contaminated sites and measures for (risk) reduction and phase out. In most countries monitoring capacity is not available and therefore other approaches for assessment of contaminated sites are needed. Available informations about PFOS contamination in hot spot areas and its bio-accumulation in the food webs have been merged to build up a worst-case scenario We model PFOS transfer from 1 to 100ngL(-1) range in water to extensive and free-range food producing animals, also via the spread of contaminated sludges on agriculture soils. The modeling indicates that forages represented 78% of the exposure in ruminants, while soil accounted for >80% in outdoor poultry/eggs and pigs. From the carry-over rates derived from literature, in pork liver, egg, and feral fish computed concentration falls at 101, 28 and 2.7ngg(-1), respectively, under the 1ngL(-1) PFOS scenario. Assuming a major consumption of food produced from a contaminated area, advisories on egg and fish, supported by good agriculture/farming practices could abate 75% of the human food intake. Such advisories would allow people to become resilient in a PFOS contaminated area through an empowerment of the food choices, bringing the alimentary exposure toward the current Tolerable Daily Intake (TDI) of 150ngkg(-1)bodyweightd(-1) proposed by the European Food Safety Authority (EFSA).
Science of The Total Environment | 2014
Evi M.L. Petro; W. D'Hollander; Adrian Covaci; Lieven Bervoets; Erik Fransen; Diane De Neubourg; Ingrid De Pauw; Jo Leroy; E.P.A. Jorssen; Peter Bols
Perfluoroalkyl acids (PFAAs) have been shown to induce negative effects in laboratory animals and in vitro experiments. Also, PFAAs have been detected in human tissues and body fluids. The ovarian follicle constitutes a fragile micro-environment where interactions between hormones, growth factors, the oocyte and surrounding somatic cells are essential to generate a fully competent oocyte. In vitro experiments suggest that PFAAs can influence this balance, but very scarce in vivo data are available to confirm this assumption. In fact, the potential PFAA-presence in the follicular micro-environment is currently unknown. Therefore, we investigated if PFAAs are present in human follicular fluid and if their presence could be a risk factor for in vivo exposed developing oocytes. Furthermore, we compared the PFAA-distribution within serum and follicular fluid. PFAAs were analyzed by LC/MS in follicular fluid (n=38) and serum (n=20) samples from women undergoing assisted reproductive technologies (ARTs). Statistical models were used to investigate PFAA-distribution in both body fluids, to compare this behavior with the distribution of lipophilic organic pollutants and to explore the relationship between patient characteristics, ART-results and follicular fluid contamination. Perfluorooctane sulfonate (PFOS) was the PFAA found in the highest concentration in follicular fluid [7.5 (0.1-30.4) ng/mL] and serum [7.6 (2.8-12.5) ng/mL]. A new variable, Principal Component 1, representing the overall PFAA-contamination of the follicular fluid samples, was associated with a higher fertilization rate (p<0.05) and a higher proportion of top embryos relative to the amount of retrieved oocytes (p<0.05), after adjusting for age, estradiol-concentration, BMI, male subfertility and the presence of other organic pollutants as explanatory variables. To conclude, overall higher PFAA-contamination in the follicular micro-environment was associated with a higher chance of an oocyte to develop into a high quality embryo. Also, PFAAs have different distribution patterns between serum and follicular fluid compared to the lipophilic organic pollutants. Further research is of course crucial to confirm these new observations.
Science of The Total Environment | 2017
Vera Verhaert; Nadine Newmark; W. D'Hollander; Adrian Covaci; Wynand Vlok; Victor Wepener; Abraham Addo-Bediako; Antoinette Jooste; Johannes Teuchies; Ronny Blust; Lieven Bervoets
Organohalogen compounds | 2012
E. Delatte; G. Brambilla; S.P. De Filippis; A. di Domenico; D. Hertze; Jana Hajslova; C. Eschauzier; W. D'Hollander; Gerhard Heinemeyer; S. Klenow; W.P. de Voogt
Environmental Pollution | 2017
Thimo Groffen; Ana Lopez-Antia; W. D'Hollander; Els Prinsen; Marcel Eens; Lieven Bervoets
Archive | 2010
Christa Cornelis; W. D'Hollander; Laurence Roosens; Roel Smolders; R. Van Den Heuvel; K. Van Campenhout; Hans Reynders; P. de Voogt; Adrian Covaci; Lieven Bervoets
Archive | 2010
W. D'Hollander; Laurence Roosens; Adrian Covaci; K. Van Campenhout; Hans Reynders; R. Van Den Heuvel; P. de Voogt; W. De Coen; Lieven Bervoets
Dioxin 2010 | 2010
G. Brambilla; Elena Dellatte; A. di Domenico; Gerhard Heinemeyer; W. D'Hollander; D. Herzke; S.P.J. van Leeuwen; W.P. de Voogt