W. Deconinck
College of William & Mary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Deconinck.
Physical Review Letters | 2013
D. Androic; A. Asaturyan; T. Averett; J. Balewski; J. Beaufait; J. Benesch; F. Benmokhtar; J. Birchall; R. Carlini; S. Covrig; W. Deconinck; J. Diefenbach; D. Dutta; M. Elaasar; D. Gaskell; J. Grames; K. Grimm; F. Guo; K. Johnston; D. Jones; M. K. Jones; R. Jones; E. Korkmaz; S. Kowalski; J. Leacock; J. Leckey; L. Lee; S. MacEwan; D. Mack; R. Mahurin
The Q(weak) experiment has measured the parity-violating asymmetry in ep elastic scattering at Q(2)=0.025(GeV/c)(2), employing 145 μA of 89% longitudinally polarized electrons on a 34.4 cm long liquid hydrogen target at Jefferson Lab. The results of the experiments commissioning run, constituting approximately 4% of the data collected in the experiment, are reported here. From these initial results, the measured asymmetry is A(ep)=-279±35 (stat) ± 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in ep scattering. The small Q(2) of this experiment has made possible the first determination of the weak charge of the proton Q(W)(p) by incorporating earlier parity-violating electron scattering (PVES) data at higher Q(2) to constrain hadronic corrections. The value of Q(W)(p) obtained in this way is Q(W)(p)(PVES)=0.064±0.012, which is in good agreement with the standard model prediction of Q(W)(p)(SM)=0.0710±0.0007. When this result is further combined with the Cs atomic parity violation (APV) measurement, significant constraints on the weak charges of the up and down quarks can also be extracted. That PVES+APV analysis reveals the neutrons weak charge to be Q(W)(n)(PVES+APV)=-0.975±0.010.
Physical Review C | 2015
W. Deconinck
The parity-violating asymmetries between a longitudinally polarized electron beam and an unpolarized deuterium target have been measured recently. The measurement covered two kinematic points in the deep-inelastic scattering region and five in the nucleon resonance region. We provide here details of the experimental setup, data analysis, and results on all asymmetry measurements including parity-violating electron asymmetries and those of inclusive pion production and beam-normal asymmetries. The parity-violating deep-inelastic asymmetries were used to extract the electron-quark weak effective couplings, and the resonance asymmetries provided the first evidence for quark-hadron duality in electroweak observables. These electron asymmetries and their interpretation were published earlier, but are presented here in more detail.
Physical Review Letters | 2013
D. Wang; Kai Pan; R. Subedi; X. Deng; Z. Ahmed; K. Allada; K. A. Aniol; D.S. Armstrong; J. Arrington; V. Bellini; R.S. Beminiwattha; J. Benesch; F. Benmokhtar; A. Camsonne; M. Canan; G. D. Cates; J. P. Chen; E. Chudakov; E. Cisbani; M. M. Dalton; C. W. de Jager; R. De Leo; W. Deconinck; A. Deur; C. Dutta; L. El Fassi; D. Flay; G. B. Franklin; M. Friend; S. Frullani
We report on parity-violating asymmetries in the nucleon resonance region measured using inclusive inelastic scattering of 5-6 GeV longitudinally polarized electrons off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232). They provide a verification of quark-hadron duality-the equivalence of the quark- and hadron-based pictures of the nucleon-at the (10-15)% level in this electroweak observable, which is dominated by contributions from the nucleon electroweak γZ interference structure functions. In addition, the results provide constraints on nucleon resonance models relevant for calculating background corrections to elastic parity-violating electron scattering measurements.
Physical Review Letters | 2014
M. Posik; D. Flay; D. Parno; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; Suyong Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin
Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25≤x≤0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized (3)He target. In this dedicated experiment, the spin structure function g(2)((3)He) was determined with precision at large x, and the neutron twist-3 matrix element d(2)(n) was measured at ⟨Q(2)⟩ of 3.21 and 4.32 GeV(2)/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ⟨Q(2)⟩=5 GeV(2)/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude.
Physics Letters B | 2015
D. Parno; D. Flay; M. Posik; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; Suyong Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin
We have performed precision measurements of the double-spin virtual-photon asymmetry A_1 on the neutron in the deep inelastic scattering regime, using an open-geometry, large-acceptance spectrometer and a longitudinally and transversely polarized ^3He target. Our data cover a wide kinematic range 0.277 ≤ x ≤0.548 at an average Q^2 value of 3.078 (GeV/c)^2, doubling the available high-precision neutron data in this x range. We have combined our results with world data on proton targets to make a leading-order extraction of the ratio of polarized-to-unpolarized parton distribution functions for up quarks and for down quarks in the same kinematic range. Our data are consistent with a previous observation of an A_1^n zero crossing near x=0.5. We find no evidence of a transition to a positive slope in (Δd+Δd)/(d+d) up to x=0.548x=0.548.
Physics Letters B | 2016
A. Blomberg; D. Anez; N. Sparveris; A. J. Sarty; M. Paolone; S. Gilad; D. W. Higinbotham; Z. Ahmed; H. Albataineh; K. Allada; B. D. Anderson; K. A. Aniol; J. R. M. Annand; J. Arrington; T. Averett; H. Baghdasaryan; X. Bai; A. Beck; S. Beck; V. Bellini; F. Benmokhtar; W. Boeglin; C.M. Camacho; A. Camsonne; Chen Chen; J. P. Chen; K. Chirapatpimol; E. Cisbani; M. M. Dalton; W. Deconinck
We report on new p(e,e′p)π∘p(e,e′p)π∘ measurements at the Δ+(1232)Δ+(1232) resonance at the low momentum transfer region, where the mesonic cloud dynamics is predicted to be dominant and rapidly changing, offering a test bed for chiral effective field theory calculations. The new data explore the Q2Q2 dependence of the resonant quadrupole amplitudes and for the first time indicate that the Electric and the Coulomb quadrupole amplitudes converge as Q2→0Q2→0. The measurements of the Coulomb quadrupole amplitude have been extended to the lowest momentum transfer ever reached, and suggest that more than half of its magnitude is attributed to the mesonic cloud in this region. The new data disagree with predictions of constituent quark models and are in reasonable agreement with dynamical calculations that include pion cloud effects, chiral effective field theory and lattice calculations. The measurements indicate that improvement is required to the theoretical calculations and provide valuable input that will allow their refinements.
Physics Letters B | 2017
J. A. Magee; A. Narayan; D. Jones; R.S. Beminiwattha; J. C. Cornejo; M. M. Dalton; W. Deconinck; D. Dutta; D. Gaskell; J. W. Martin; Kent Paschke; Vladas Tvaskis; A. Asaturyan; J. Benesch; G. D. Cates; B. S. Cavness; L. A. Dillon-Townes; G. Hays; J.R. Hoskins; E. Ihloff; R. Jones; P. M. King; S. Kowalski; L. Kurchaninov; L. Lee; A. McCreary; M. McDonald; A. Micherdzinska; A. Mkrtchyan; H. Mkrtchyan
Abstract We have performed a novel comparison between electron-beam polarimeters based on Moller and Compton scattering. A sequence of electron-beam polarization measurements were performed at low beam currents ( 5 μ A ) during the Q weak experiment in Hall-C at Jefferson Lab. These low current measurements were bracketed by the regular high current ( 180 μ A ) operation of the Compton polarimeter. All measurements were found to be consistent within experimental uncertainties of 1% or less, demonstrating that electron polarization does not depend significantly on the beam current. This result lends confidence to the common practice of applying Moller measurements made at low beam currents to physics experiments performed at higher beam currents. The agreement between two polarimetry techniques based on independent physical processes sets an important benchmark for future precision asymmetry measurements that require sub-1% precision in polarimetry.
Physical Review D | 2016
D. Flay; M. Posik; D. Parno; K. Allada; W. Armstrong; T. Averett; F. Benmokhtar; W. Bertozzi; A. Camsonne; M. Canan; G. D. Cates; Chen Chen; J. P. Chen; Suyong Choi; E. Chudakov; F. Cusanno; M. M. Dalton; W. Deconinck; C. W. de Jager; X. Deng; A. Deur; C. Dutta; L. El Fassi; G. B. Franklin; M. Friend; H. Gao; F. Garibaldi; S. Gilad; R. Gilman; O. Glamazdin
We report on the results of the E06-014 experiment performed at Jefferson Lab in Hall A, where a precision measurement of the twist-3 matrix element d_2 of the neutron (d^n_2) was conducted. The quantity dn_2 represents the average color Lorentz force a struck quark experiences in a deep inelastic electron scattering event off a neutron due to its interaction with the hadronizing remnants. This color force was determined from a linear combination of the third moments of the ^3He spin structure functions, g_1 and g_2, after nuclear corrections had been applied to these moments. The structure functions were obtained from a measurement of the unpolarized cross section and of double-spin asymmetries in the scattering of a longitudinally polarized electron beam from a transversely and a longitudinally polarized ^3He target. The measurement kinematics included two average Q^2 bins of 3.2 GeV^2 and 4.3 GeV^2, and Bjorken-x 0.25≤ x ≤0.90 covering the deep inelastic and resonance regions. We have found that d^n_2 is small and negative for ⟨Q^2⟩=3.2 GeV^2, and even smaller for ⟨Q^2⟩=4.3 GeV^2, consistent with the results of a lattice QCD calculation. The twist-4 matrix element f^n_2 was extracted by combining our measured d^n_2 with the world data on the first moment in x of g^n_1, Γ^n_1. We found f^n_2 to be roughly an order of magnitude larger than dn2. Utilizing the extracted d^n_2 and f^n_2 data, we separated the Lorentz color force into its electric and magnetic components, F^(y,n)_E and F^(y,n)_B, and found them to be equal and opposite in magnitude, in agreement with the predictions from an instanton model but not with those from QCD sum rules. Furthermore, using the measured double-spin asymmetries, we have extracted the virtual photon-nucleon asymmetry on the neutron A^n_1, the structure function ratio g^n_1/F^n_1, and the quark ratios (Δu+Δu)/(u+u) and (Δd+Δd)/(d+d). These results were found to be consistent with deep-inelastic scattering world data and with the prediction of the constituent quark model but at odds with the perturbative quantum chromodynamics predictions at large x.
arXiv: Nuclear Experiment | 2015
A. Narayan; D. Jones; J. C. Cornejo; M. M. Dalton; W. Deconinck; D. Dutta; D. Gaskell; J. W. Martin; Kent Paschke; V. Tvaskis; A. Asaturyan; J. Benesch; G. D. Cates; B. S. Cavness; L. A. Dillon-Townes; G. Hays; E. Ihloff; R. Jones; S. Kowalski; L. Kurchaninov; L. Lee; A. McCreary; M. McDonald; A. Micherdzinska; A. Mkrtchyan; H. Mkrtchyan; V. Nelyubin; S. Page; W. D. Ramsay; P. Solvignon
We report on the highest precision yet achieved in the measurement of the polarization of a low energy,
Nature | 2018
D. Androic; M. Shabestari; B. Sawatzky; K. Bartlett; J.F. Dowd; L. Lee; S. Zhamkochyan; D. Gaskell; T. Averett; V. Tvaskis; B. Waidyawansa; M. Poelker; D. Dutta; V.M. Gray; A. Micherdzinska; A. Asaturyan; Nuruzzaman; J. Grames; J. Leacock; N. Simicevic; P. Wang; J. Leckey; Jae Hyuk Lee; J. Dunne; P. Solvignon; J. Benesch; R. Suleiman; A. Mkrtchyan; Kent Paschke; M. M. Dalton
\mathcal{O}