W. E. Rogers
United States Naval Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. E. Rogers.
Ocean Engineering | 2002
W. E. Rogers; James M. Kaihatu; H.A.H. Petit; N. Booij; L.H. Holthuijsen
Abstract The numerical schemes for the geographic propagation of random, short-crested, wind-generated waves in third-generation wave models are either unconditionally stable or only conditionally stable. Having an unconditionally stable scheme gives greater freedom in choosing the time step (for given space steps). The third-generation wave model SWAN (“Simulated WAves Nearshore”, Booij et al., 1999 ) has been implemented with this type of scheme. This model uses a first order, upwind, implicit numerical scheme for geographic propagation. The scheme can be employed for both stationary (typically small scale) and nonstationary (i.e. time-stepping) computations. Though robust, this first order scheme is very diffusive. This degrades the accuracy of the model in a number of situations, including most model applications at larger scales. The authors reduce the diffusiveness of the model by replacing the existing numerical scheme with two alternative higher order schemes, a scheme that is intended for stationary, small-scale computations, and a scheme that is most appropriate for nonstationary computations. Examples representative of both large-scale and small-scale applications are presented. The alternative schemes are shown to be much less diffusive than the original scheme while retaining the implicit character of the particular SWAN set-up. The additional computational burden of the stationary alternative scheme is negligible, and the expense of the nonstationary alternative scheme is comparable to those used by other third generation wave models. To further accommodate large-scale applications of SWAN, the model is reformulated in terms of spherical coordinates rather than the original Cartesian coordinates. Thus the modified model can calculate wave energy propagation accurately and efficiently at any scale varying from laboratory dimensions (spatial scale O(10 m) with resolution O(0.1 m)), to near-shore coastal dimension (spatial scale O(10 km) with resolution O(100 m)) to oceanic dimensions (spatial scale O(10 000 km) with resolution O(100 km).
Journal of Geophysical Research | 2018
Michael H. Meylan; Luke G. Bennetts; J. E. M. Mosig; W. E. Rogers; M Doble; Malte A. Peter
Analysis of field measurements of ocean surface wave activity in the marginal ice zone, from campaigns in the Arctic and Antarctic and over a range of different ice conditions, shows the wave attenuation rate with respect to distance has a power law dependence on the frequency with order between two and four. With this backdrop, the attenuation-frequency power law dependencies given by three dispersion relation models are obtained under the assumptions of weak attenuation, negligible deviation of the wave number from the open water wave number, and thin ice. It is found that two of the models (both implemented in WAVEWATCH IIIR ), predict attenuation rates that are far more sensitive to frequency than indicated by the measurements. An alternative method is proposed to derive dispersion relation models, based on energy loss mechanisms. The method is used to generate example models that predict power law dependencies that are comparable with the field measurements.
Journal of Atmospheric and Oceanic Technology | 2017
Clarence O. Collins; B. W. Blomquist; Ola Persson; Björn Lund; W. E. Rogers; Jim Thomson; D. Wang; Madison Smith; M Doble; Peter Wadhams; Alison L. Kohout; Christopher W. Fairall; Hans C. Graber
Abstract“Sea State and Boundary Layer Physics of the Emerging Arctic Ocean” is an ongoing Departmental Research Initiative sponsored by the Office of Naval Research (http://www.apl.washington.edu/project/project.php?id=arctic_sea_state). The field component took place in the fall of 2015 within the Beaufort and Chukchi Seas and involved the deployment of a number of wave instruments, including a downward-looking Riegl laser rangefinder mounted on the foremast of the R/V Sikuliaq. Although time series measurements on a stationary vessel are thought to be accurate, an underway vessel introduces a Doppler shift to the observed wave spectrum. This Doppler shift is a function of the wavenumber vector and the velocity vector of the vessel. Of all the possible relative angles between wave direction and vessel heading, there are two main scenarios: 1) vessel steaming into waves and 2) vessel steaming with waves. Previous studies have considered only a subset of cases, and all were in scenario 1. This was likely t...
Journal of Geophysical Research | 2017
Henrique Rapizo; Alexander V. Babanin; D. Provis; W. E. Rogers
Despite many recent developments of the parameterization for wave dissipation in spectral models, it is evident that when waves propagate onto strong adverse currents the rate of energy dissipation is not properly estimated. The issue of current-induced dissipation is studied through a comprehensive data set in the tidal inlet of Port Phillip Heads, Australia. The wave parameters analyzed are significantly modulated by the tidal currents. Wave height in conditions of opposing currents (ebb tide) can reach twice the offshore value, whereas during coflowing currents (flood), it can be reduced to half. The wind-wave model SWAN is able to reproduce the tide-induced modulation of waves and the results show that the variation of currents is the dominant factor in modifying the wave field. In stationary simulations, the model provides an accurate representation of wave height for slack and flood tides. During ebb tides, wave energy is highly overestimated over the opposing current jet. None of the four parameterizations for wave dissipation tested performs satisfactorily. A modification to enhance dissipation as a function of the local currents is proposed. It consists of the addition of a factor that represents current-induced wave steepening and it is scaled by the ratio of spectral energy to the threshold breaking level. The new term asymptotes to the original form as the current in the wave direction tends to zero. The proposed modification considerably improves wave height and mean period in conditions of adverse currents, whereas the good model performance in coflowing currents is unaltered.
Journal of Geophysical Research | 2013
Jim Thomson; Eric A. D'Asaro; Meghan F. Cronin; W. E. Rogers; Ramsey R. Harcourt; Andrey Y. Shcherbina
Journal of Geophysical Research | 2007
Timothy R. Keen; W. E. Rogers; James D. Dykes; James M. Kaihatu; K. T. Holland
Eos | 2017
Jim Thomson; Stephen F. Ackley; Hayley H. Shen; W. E. Rogers
Journal of Geophysical Research | 2017
Henrique Rapizo; Alexander V. Babanin; D. Provis; W. E. Rogers
Journal of Geophysical Research | 2017
Henrique Rapizo; Alexander V. Babanin; D. Provis; W. E. Rogers
Journal of Geophysical Research | 2013
Jim Thomson; Eric A. D'Asaro; Meghan F. Cronin; W. E. Rogers; Ramsey R. Harcourt; Andrey Y. Shcherbina