Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Edward Highsmith is active.

Publication


Featured researches published by W. Edward Highsmith.


Human Pathology | 2012

Isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma

Benjamin R. Kipp; Jesse S. Voss; Sarah E. Kerr; Emily G. Barr Fritcher; Rondell P. Graham; Lizhi Zhang; W. Edward Highsmith; Jun Zhang; Lewis R. Roberts; Gregory J. Gores; Kevin C. Halling

Somatic mutations in isocitrate dehydrogenase 1 and 2 genes are common in gliomas and help stratify patients with brain cancer into histologic and molecular subtypes. However, these mutations are considered rare in other solid tumors. The aims of this study were to determine the frequency of isocitrate dehydrogenase 1 and 2 mutations in cholangiocarcinoma and to assess histopathologic differences between specimens with and without an isocitrate dehydrogenase mutation. We sequenced 94 formalin-fixed, paraffin-embedded cholangiocarcinoma (67 intrahepatic and 27 extrahepatic) assessing for isocitrate dehydrogenase 1 (codon 132) and isocitrate dehydrogenase 2 (codons 140 and 172) mutations. Multiple histopathologic characteristics were also evaluated and compared with isocitrate dehydrogenase 1/2 mutation status. Of the 94 evaluated specimens, 21 (22%) had a mutation including 14 isocitrate dehydrogenase 1 and 7 isocitrate dehydrogenase 2 mutations. Isocitrate dehydrogenase mutations were more frequently observed in intrahepatic cholangiocarcinoma than in extrahepatic cholangiocarcinoma (28% versus 7%, respectively; P = .030). The 14 isocitrate dehydrogenase 1 mutations were R132C (n = 9), R132S (n = 2), R132G (n = 2), and R132L (n = 1). The 7 isocitrate dehydrogenase 2 mutations were R172K (n = 5), R172M (n = 1), and R172G (n = 1). Isocitrate dehydrogenase mutations were more frequently observed in tumors with clear cell change (P < .001) and poorly differentiated histology (P = .012). The results of this study show for the first time that isocitrate dehydrogenase 1 and 2 genes are mutated in cholangiocarcinoma. The results of this study are encouraging because it identifies a new potential target for genotype-directed therapeutic trials and may represent a potential biomarker for earlier detection of cholangiocarcinoma in a subset of cases.


Human Pathology | 2013

Molecular profiling of cholangiocarcinoma shows potential for targeted therapy treatment decisions

Jesse S. Voss; Leonard M. Holtegaard; Sarah E. Kerr; Emily G. Barr Fritcher; Lewis R. Roberts; Gregory J. Gores; Jun Zhang; W. Edward Highsmith; Kevin C. Halling; Benjamin R. Kipp

Cholangiocarcinoma is a highly lethal cancer of the biliary tract. The intrahepatic subtype of cholangiocarcinoma is increasing in incidence globally. Despite technologic advancements over the past decade, little is known about the somatic changes that occur in these tumors. The goal of this study was to determine the frequency of common oncogenes in resected cholangiocarcinoma specimens that could provide potential therapeutic targets for patients diagnosed with cholangiocarcinoma. Formalin-fixed, paraffin-embedded tissue blocks from 94 resected cholangiocarcinomas were used to extract DNA from areas comprising more than 20% tumor. Specimens were evaluated using the Sequenom MassARRAY OncoCarta Mutation Profiler Panel (San Diego, CA). This matrix-assisted laser desorption/ionization-time of flight mass spectrometry single genotyping panel evaluates 19 oncogenes for 238 somatic mutations. Twenty-five mutations were identified in 23 of the 94 cholangiocarcinomas within the following oncogenes: KRAS (n = 12), PIK3CA (n = 5), MET (n = 4), EGFR (n = 1), BRAF (n = 2), and NRAS (n = 1). Mutations were identified in 7 (26%) of 27 extrahepatic cholangiocarcinomas and 16 (24%) of 67 intrahepatic cholangiocarcinomas. When combined with IDH1/2 testing, 40 (43%) of the 94 cholangiocarcinomas had a detectable mutation. MassARRAY technology can be used to detect mutations in a wide variety of oncogenes using paraffin-embedded tissue. Clinical testing for somatic mutations may drive personalized therapy selection for cholangiocarcinomas in the future. The variety of mutations detected suggests that a multiplexed mutation detection approach may be necessary for managing patients with biliary tract malignancy.


PLOS ONE | 2012

A Common Trinucleotide Repeat Expansion within the Transcription Factor 4 (TCF4, E2-2) Gene Predicts Fuchs Corneal Dystrophy

Eric D. Wieben; Ross A. Aleff; Nirubol Tosakulwong; Malinda L. Butz; W. Edward Highsmith; Albert O. Edwards; Keith H. Baratz

Fuchs endothelial corneal dystrophy (FECD) is a common, familial disease of the corneal endothelium and is the leading indication for corneal transplantation. Variation in the transcription factor 4 (TCF4) gene has been identified as a major contributor to the disease. We tested for an association between an intronic TGC trinucleotide repeat in TCF4 and FECD by determining repeat length in 66 affected participants with severe FECD and 63 participants with normal corneas in a 3-stage discovery/replication/validation study. PCR primers flanking the TGC repeat were used to amplify leukocyte-derived genomic DNA. Repeat length was determined by direct sequencing, short tandem repeat (STR) assay and Southern blotting. Genomic Southern blots were used to evaluate samples for which only a single allele was identified by STR analysis. Compiling data for 3 arms of the study, a TGC repeat length >50 was present in 79% of FECD cases and in 3% of normal controls cases (p<0.001). Among cases, 52 of 66 (79%) subjects had >50 TGC repeats, 13 (20%) had <40 repeats and 1 (2%) had an intermediate repeat length. In comparison, only 2 of 63 (3%) unaffected control subjects had >50 repeats, 60 (95%) had <40 repeats and 1 (2%) had an intermediate repeat length. The repeat length was greater than 1000 in 4 FECD cases. The sensitivity and specificity of >50 TGC repeats identifying FECD in this patient cohort was 79% and 96%, respectively Expanded TGC repeat was more specific for FECD cases than the previously identified, highly associated, single nucleotide polymorphism, rs613872 (specificity = 79%). The TGC trinucleotide repeat expansion in TCF4 is strongly associated with FECD, and a repeat length >50 is highly specific for the disease This association suggests that trinucleotide expansion may play a pathogenic role in the majority of FECD cases and is a predictor of disease risk.


Cancer | 2009

Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma

Robert R. McWilliams; Gloria M. Petersen; Kari G. Rabe; Leonard M. Holtegaard; Pamela J. Lynch; Michele D. Bishop; W. Edward Highsmith

Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are common in white persons and are associated with pancreatic disease. The purpose of this case‐control study was to determine whether CFTR mutations confer a higher risk of pancreatic cancer.


The Journal of Clinical Endocrinology and Metabolism | 2010

Detailed Molecular Fingerprinting of Four New Anaplastic Thyroid Carcinoma Cell Lines and Their Use for Verification of RhoB as a Molecular Therapeutic Target

Laura A. Marlow; Jaclyn D'Innocenzi; Yilin Zhang; Stephen D. Rohl; Simon J. Cooper; Thomas J. Sebo; Clive S. Grant; Bryan McIver; Jan L. Kasperbauer; J. Trad Wadsworth; John D. Casler; Pamela W. Kennedy; W. Edward Highsmith; Orlo H. Clark; Dragana Milosevic; Brian C. Netzel; Kendall W. Cradic; Shilpi Arora; Christian Beaudry; Stefan K. Grebe; Marc L. Silverberg; David O. Azorsa; Robert C. Smallridge; John A. Copland

CONTEXT Anaplastic thyroid carcinoma (ATC) is a highly aggressive carcinoma in need of therapeutic options. One critical component of drug discovery is the availability of well-characterized cell lines for identification of molecular mechanisms related to tumor biology and drug responsiveness. Up to 42% of human thyroid cancer cell lines are redundant or not of correct tissue origin, and a comprehensive analysis is currently nonexistent. Mechanistically, RhoB has been identified as a novel molecular target for ATC therapy. OBJECTIVE The aim was to develop four ATC cell lines detailing genetic, molecular, and phenotypic characteristics and to test five classes of drugs on the cell lines to determine whether they inhibited cell proliferation in a RhoB-dependent fashion. DESIGN Four cell lines were derived from ATC tumors. Short tandem DNA repeat and mutational status of the originating tumors and cell lines were performed along with molecular and phenotypic characterizations. Compounds were tested for growth inhibition and ability to up-regulate RhoB. RESULTS Cell line authenticity was confirmed by DNA short tandem repeat analysis. Each proved unique regarding expression of thyroid markers, oncogene status, amplified and deleted genes, and proliferative growth rates. FTI-277, GGTI-286, lovastatin, romidepsin, and UCN-01 up-regulated RhoB and inhibited cell proliferation in a dose-responsive fashion with only romidepsin and FTI-277 being RhoB dependent. CONCLUSIONS Molecular descriptions of thyroid lines were matched to the originating tumors, setting a new standard for cell line characterization. Furthermore, suppressed RhoB is implicated as a molecular target for therapy against ATC because five classes of drugs up-regulate RhoB and inhibit growth dose-responsively.


The Journal of Molecular Diagnostics | 2008

Consensus Characterization of 16 FMR1 Reference Materials: A Consortium Study

Jean Amos Wilson; Victoria M. Pratt; Amit Phansalkar; Kasinathan Muralidharan; W. Edward Highsmith; Jeanne C. Beck; Scott J. Bridgeman; Ebony M. Courtney; Lidia Epp; Andrea Ferreira-Gonzalez; Nick L. Hjelm; Leonard M. Holtegaard; Mohamed Jama; John P. Jakupciak; Monique A. Johnson; Paul Labrousse; Elaine Lyon; Thomas W. Prior; C. Sue Richards; Kristy L. Richie; Benjamin B. Roa; Elizabeth M. Rohlfs; Tina Sellers; Stephanie L. Sherman; Karen A. Siegrist; Lawrence M. Silverman; Joanna Wiszniewska; Lisa Kalman

Fragile X syndrome, which is caused by expansion of a (CGG)(n) repeat in the FMR1 gene, occurs in approximately 1:3500 males and causes mental retardation/behavioral problems. Smaller (CGG)(n) repeat expansions in FMR1, premutations, are associated with premature ovarian failure and fragile X-associated tremor/ataxia syndrome. An FMR1-sizing assay is technically challenging because of high GC content of the (CGG)(n) repeat, the size limitations of conventional PCR, and a lack of reference materials available for test development/validation and routine quality control. The Centers for Disease Control and Prevention and the Association for Molecular Pathology, together with the genetic testing community, have addressed the need for characterized fragile X mutation reference materials by developing characterized DNA samples from 16 cell lines with repeat lengths representing important phenotypic classes and diagnostic cutoffs. The alleles in these materials were characterized by consensus analysis in nine clinical laboratories. The information generated from this study is available on the Centers for Disease Control and Prevention and Coriell Cell Repositories websites. DNA purified from these cell lines is available to the genetics community through the Coriell Cell Repositories. The public availability of these reference materials should help support accurate clinical fragile X syndrome testing.


Clinical Cancer Research | 2012

Multisite Validation Study to Determine Performance Characteristics of a 92-Gene Molecular Cancer Classifier

Sarah E. Kerr; Catherine A. Schnabel; Peggy S. Sullivan; Yi Zhang; Veena Singh; Brittany Carey; Mark G. Erlander; W. Edward Highsmith; Sarah M. Dry; Elena F. Brachtel

Purpose: Accurate tumor classification is essential for cancer management as patient outcomes improve with use of site- and subtype-specific therapies. Current clinicopathologic evaluation is varied in approach, yet standardized diagnoses are critical for determining therapy. While gene expression–based cancer classifiers may potentially meet this need, imperative to determining their application to patient care is validation in rigorously designed studies. Here, we examined the performance of a 92-gene molecular classifier in a large multi-institution cohort. Experimental Design: Case selection incorporated specimens from more than 50 subtypes, including a range of tumor grades, metastatic and primary tumors, and limited tissue samples. Formalin-fixed, paraffin-embedded tumors passed pathologist-adjudicated review between three institutions. Tumor classification using a 92-gene quantitative reverse transcriptase polymerase chain reaction (RT-PCR) assay was conducted on blinded tumor sections from 790 cases and compared with adjudicated diagnoses. Results: The 92-gene assay showed overall sensitivities of 87% for tumor type [95% confidence interval (CI), 84–89] and 82% for subtype (95% CI, 79–85). Analyses of metastatic tumors, high-grade tumors, or cases with limited tissue showed no decrease in comparative performance (P = 0.16, 0.58, and 0.16). High specificity (96%–100%) was showed for ruling in a primary tumor in organs commonly harboring metastases. The assay incorrectly excluded the adjudicated diagnosis in 5% of cases. Conclusions: The 92-gene assay showed strong performance for accurate molecular classification of a diverse set of tumor histologies. Results support potential use of the assay as a standardized molecular adjunct to routine clinicopathologic evaluation for tumor classification and primary site diagnosis. Clin Cancer Res; 18(14); 3952–60. ©2012 AACR.


The Journal of Molecular Diagnostics | 2009

Development of Genomic Reference Materials for Cystic Fibrosis Genetic Testing

Victoria M. Pratt; Michele Caggana; Christina Bridges; Arlene Buller; Lisa DiAntonio; W. Edward Highsmith; Leonard M. Holtegaard; Kasinathan Muralidharan; Elizabeth M. Rohlfs; Jack Tarleton; Lorraine Toji; Shannon D. Barker; Lisa Kalman

The number of different laboratories that perform genetic testing for cystic fibrosis is increasing. However, there are a limited number of quality control and other reference materials available, none of which cover all of the alleles included in commercially available reagents or platforms. The alleles in many publicly available cell lines that could serve as reference materials have neither been confirmed nor characterized. The Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing community as well as Coriell Cell Repositories, have characterized an extended panel of publicly available genomic DNA samples that could serve as reference materials for cystic fibrosis testing. Six cell lines [containing the following mutations: E60X (c.178G>T), 444delA (c.312delA), G178R (c.532G>C), 1812-1G>A (c.1680-1G>A), P574H (c.1721C>A), Y1092X (c.3277C>A), and M1101K (c.3302T>A)] were selected from those existing at Coriell, and seven [containing the following mutations: R75X (c.223C>T), R347H (c.1040G>A), 3876delA (c.3744delA), S549R (c.1646A>C), S549N (c.1647G>A), 3905insT (c.3773_3774insT), and I507V (c.1519A>G)] were created. The alleles in these materials were confirmed by testing in six different volunteer laboratories. These genomic DNA reference materials will be useful for quality assurance, proficiency testing, test development, and research and should help to assure the accuracy of cystic fibrosis genetic testing in the future. The reference materials described in this study are all currently available from Coriell Cell Repositories.


Journal of The American Society of Nephrology | 2017

Novel Type of Renal Amyloidosis Derived from Apolipoprotein-CII

Samih H. Nasr; Surendra Dasari; Linda Hasadsri; Jason D. Theis; Julie A. Vrana; Morie A. Gertz; Prasuna Muppa; Michael T. Zimmermann; Karen L. Grogg; Angela Dispenzieri; Sanjeev Sethi; W. Edward Highsmith; Giampaolo Merlini; Nelson Leung; Paul J. Kurtin

Amyloidosis is characterized by extracellular deposition of misfolded proteins as insoluble fibrils. Most renal amyloidosis cases are Ig light chain, AA, or leukocyte chemotactic factor 2 amyloidosis, but rare hereditary forms can also involve the kidneys. Here, we describe the case of a 61-year-old woman who presented with nephrotic syndrome and renal impairment. Examination of the renal biopsy specimen revealed amyloidosis with predominant involvement of glomeruli and medullary interstitium. Proteomic analysis of Congo red-positive deposits detected large amounts of the Apo-CII protein. DNA sequencing of the APOC2 gene in the patient and one of her children detected a heterozygous c.206A→T transition, causing an E69V missense mutation. We also detected the mutant peptide in the probands renal amyloid deposits. Using proteomics, we identified seven additional elderly patients with Apo-CII-rich amyloid deposits, all of whom had kidney involvement and histologically exhibited nodular glomerular involvement. Although prior in vitro studies have shown that Apo-CII can form amyloid fibrils and that certain mutations in this protein promote amyloid fibrillogenesis, there are no reports of this type of amyloidosis in humans. We propose that this study reveals a new form of hereditary amyloidosis (AApoCII) that is derived from the Apo-CII protein and appears to manifest in the elderly and preferentially affect the kidneys.


Journal of Proteome Research | 2014

Clinical Proteome Informatics Workbench Detects Pathogenic Mutations in Hereditary Amyloidoses

Surendra Dasari; Jason D. Theis; Julie A. Vrana; Roman M. Zenka; Michael T. Zimmermann; Jean Pierre A Kocher; W. Edward Highsmith; Paul J. Kurtin; Ahmet Dogan

Shotgun proteomics of hereditary amyloid deposits generates all the information necessary to identify pathogenic mutant peptides and proteins. However, these mutant peptides are invisible to traditional database search strategies. We developed a two-pronged informatics workflow for detecting both known and novel amyloidogenic mutations from clinical proteomics data sets. We implemented the workflow in a CAP/CLIA certified clinical laboratory dedicated for proteomic subtyping of amyloid deposits extracted from formalin-fixed paraffin-embedded specimens. Performance of the workflow was characterized on a validation cohort of 49 hereditary amyloid samples, with confirmed mutations, and 85 controls. The sensitivity, specificity, positive predictive value, and negative predictive value of the known mutation detection workflow were determined to be 92%, 100%, 100%, and 96%, respectively. For novel mutation detection workflow, these performance parameters were 82%, 99%, 99%, and 90%, respectively. Validated workflow was applied to detect amyloidogenic mutations from a clinical cohort of 150 amyloid samples. The known mutation detection workflow detected rare frame shift mutations in apolipoprotein A1 and fibrinogen alpha amyloid deposits. The novel mutation detection workflow uncovered unanticipated mutations (W22G and C71Y) of the serum amyloid A4 protein present in patient amyloid deposits. In summary, clinical amyloid proteomics data sets contain mutant peptides of clinical significance that are recoverable with improved bioinformatics.

Collaboration


Dive into the W. Edward Highsmith's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge