W. Elaine Hardman
Marshall University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Elaine Hardman.
Nutrition and Cancer | 2008
W. Elaine Hardman; Gabriela Ion
Walnuts contain components that may slow cancer growth including omega 3 fatty acids, phytosterols, polyphenols, carotenoids, and melatonin. A pilot study was performed to determine whether consumption of walnuts could affect growth of MDA-MB 231 human breast cancers implanted into nude mice. Tumor cells were injected into nude mice that were consuming an AIN-76A diet slightly modified to contain 10% corn oil. After the tumors reached 3 to 5 mm diameter, the diet of one group of mice was changed to include ground walnuts, equivalent to 56 g (2 oz) per day in humans. The tumor growth rate from Day 10, when tumor sizes began to diverge, until the end of the study of the group that consumed walnuts (2.9 ± 1.1 mm3/day; mean ± standard error of the mean) was significantly less (P > 0.05, t-test of the growth rates) than that of the group that did not consume walnuts (14.6 ± 1.3 mm 3 /day). The eicosapentaenoic and docosahexaenoic acid fractions of the livers of the group that consumed walnuts were significantly higher than that of the group that did not consume walnuts. Tumor cell proliferation was decreased, but apoptosis was not altered due to walnut consumption. Further work is merited to investigate applications to cancer in humans.
PLOS ONE | 2010
Kathleen C. Brown; Theodore R. Witte; W. Elaine Hardman; Haitao Luo; Y Chen; A. Betts Carpenter; Jamie K. Lau; Piyali Dasgupta
Background Small cell lung cancer (SCLC) is characterized by rapid progression and low survival rates. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin, the active ingredient of chilli peppers, displays anti-proliferative activity in prostate and epidermoid cancer in vitro. However, the anti-proliferative activity of capsaicin has not been studied in human SCLCs. The present manuscript fills this void of knowledge and explores the anti-proliferative effect of capsaicin in SCLC in vitro and in vivo. Methodology/Principal Findings BrdU assays and PCNA ELISAs showed that capsaicin displays robust anti-proliferative activity in four human SCLC cell lines. Furthermore, capsaicin potently suppressed the growth of H69 human SCLC tumors in vivo as ascertained by CAM assays and nude mice models. The second part of our study attempted to provide insight into molecular mechanisms underlying the anti-proliferative activity of capsaicin. We found that the anti-proliferative activity of capsaicin is correlated with a decrease in the expression of E2F-responsive proliferative genes like cyclin E, thymidylate synthase, cdc25A and cdc6, both at mRNA and protein levels. The transcription factor E2F4 mediated the anti-proliferative activity of capsaicin. Ablation of E2F4 levels by siRNA methodology suppressed capsaicin-induced G1 arrest. ChIP assays demonstrated that capsaicin caused the recruitment of E2F4 and p130 on E2F-responsive proliferative promoters, thereby inhibiting cell proliferation. Conclusions/Significance Our findings suggest that the anti-proliferative effects of capsaicin could be useful in the therapy of human SCLCs.
Carcinogenesis | 2012
Juliana A. Akinsete; Gabriela Ion; Theodore R. Witte; W. Elaine Hardman
Prostate cancer incidence and mortality are high in the Western world and high ω-6/ω-3 PUFA in the Western diet may be a contributing factor. We investigated whether changing from a diet that approximates ω-6 fat content of the Western diet to a high ω-3 fat diet at adulthood might reduce prostate cancer risk. Female SV 129 mice that had consumed a high ω-6 diet containing corn oil for 2 weeks were bred with homozygous C3(1)Tag transgenic male mice. All male offspring were weaned to the corn oil diet (CO) until postpuberty when half of the male offspring were transferred to a high ω-3 diet containing canola oil and fish oil concentrate (FS). High ω-3 diet increased ω-3 and decreased ω-6 fat content of mice tissues. Average weights of prostate and genitourinary bloc were significantly lower in mice consuming high ω-3 diet at adulthood (CO-FS) than mice fed a lifetime high ω-6 diet (CO–CO). There was slower progression of tumorigenesis in dorsalateral prostate of CO-FS than in CO–CO mice. CO-FS mice had slightly lower plasma testosterone level at 24 and 40 weeks, significantly lower estradiol level at 40 weeks and significantly less expressed androgen receptor (AR) in the dorsalateral prostate at 40 weeks than CO–CO mice. Consumption of high ω-3 diet lowered the expression of genes expected to increase proliferation and decrease apoptosis in dorsalateral prostate. Our results suggest that consumption of high ω-3 diet slows down prostate tumorigenesis by lowering estradiol, testosterone and AR levels, promoting apoptosis and suppressing cell proliferation in C3(1)Tag mice.
PLOS ONE | 2013
Flavia De Carlo; Theodore R. Witte; W. Elaine Hardman; Pier Paolo Claudio
Colorectal cancer is the third leading cause of cancer-related death in the western world. In vitro and in vivo experiments showed that omega-3 polyunsaturated fatty acids (n-3 PUFAs) can attenuate the proliferation of cancer cells, including colon cancer, and increase the efficacy of various anticancer drugs. However, these studies address the effects of n-3 PUFAs on the bulk of the tumor cells and not on the undifferentiated colon cancer stem-like cells (CSLCs) that are responsible for tumor formation and maintenance. CSLCs have also been linked to the acquisition of chemotherapy resistance and to tumor relapse. Colon CSLCs have been immunophenotyped using several antibodies against cellular markers including CD133, CD44, EpCAM, and ALDH. Anti-CD133 has been used to isolate a population of colon cancer cells that retains stem cells properties (CSLCs) from both established cell lines and primary cell cultures. We demonstrated that the n-3 PUFA, eicosapentaenoic acid (EPA), was actively incorporated into the membrane lipids of COLO 320 DM cells. 25 uM EPA decreased the cell number of the overall population of cancer cells, but not of the CD133 (+) CSLCs. Also, we observed that EPA induced down-regulation of CD133 expression and up-regulation of colonic epithelium differentiation markers, Cytokeratin 20 (CK20) and Mucin 2 (MUC2). Finally, we demonstrated that EPA increased the sensitivity of COLO 320 DM cells (total population) to both standard-of-care chemotherapies (5-Fluorouracil and oxaliplatin), whereas EPA increased the sensitivity of the CD133 (+) CSLCs to only 5-Fluorouracil.
Nutrition and Cancer | 2007
W. Elaine Hardman
Abstract: Long chain omega 3 (n-3) fatty acids, eicosapentaenoic (EPA) and/or docosahexaenoic acid (DHA), have been shown to suppress growth of most cancer cells. In vivo, alpha linolenic acid (ALA, 18:3n-3) can be converted to EPA or DHA. We hypothesized that substituting canola oil (10% ALA) for the corn oil (1% ALA) in the diet of cancer bearing mice would slow tumor growth by increasing n-3 fatty acids in the diet. Sixty nude mice received MDA-MB 231 human breast cancer cells and were fed a diet containing 8% w/w corn oil until the mean tumor volume was 60 mm 3 . The dietary fat of half of the tumor bearing mice was then changed to 8% w/w canola oil. Compared to mice that consumed the corn oil containing diet, the mice that consumed the canola oil containing diet had significantly more EPA and DHA in both tumors and livers, and the mean tumor growth rate and cell proliferation in the tumor were significantly slower (P < 0.05). About 25 days after diet change, mice that consumed the corn oil diet stopped gaining weight, whereas the mice that consumed the canola oil diet continued normal weight gain. Use of canola oil instead of corn oil in the diet may be a reasonable means to increase consumption of n-3 fatty acids with potential significance for slowing growth of residual cancer cells in cancer survivors.
Nutrition and Cancer | 2011
W. Elaine Hardman; Gabriela Ion; Juliana A. Akinsete; Theodore R. Witte
Walnuts contain multiple ingredients that, individually, have been shown to slow cancer growth, including omega-3 fatty acids, antioxidants, and phytosterols. In previous research, consumption of walnuts has slowed the growth of implanted breast cancers. We wanted to determine whether regular walnut consumption might reduce the risk for developing cancer. Homozygous male C(3)1 TAg mice were bred with female SV129 mice consuming either the control AIN-76 diet or the walnut-containing diet. At weaning, the female hemizygous pups were randomized to control or walnut-containing diets and followed for tumor development. Compared to a diet without walnuts, consumption of walnuts significantly reduced tumor incidence (fraction of mice with at least one tumor), multiplicity (number of glands with tumor/mouse), and size. Gene expression analyses indicated that consumption of the walnut diet altered expression of multiple genes associated with proliferation and differentiation of mammary epithelial cells. A comparison with another dietary intervention indicated that the omega 3 content alone did not account for the extent of tumor suppression due to the walnut. The results of this study indicate that walnut consumption could contribute to a healthy diet to reduce risk for breast cancer.
BMC Cancer | 2010
Gabriela Ion; Juliana A. Akinsete; W. Elaine Hardman
BackgroundMaternal consumption of a diet high in omega 6 polyunsaturated fats (n-6 PUFA) has been shown to increase risk whereas a diet high in omega 3 polyunsaturated fats (n-3 PUFA) from fish oil has been shown to decrease risk for mammary gland cancer in female offspring of rats. The aim of this study was to determine whether increasing n-3 PUFA and reducing n-6 PUFA by using canola oil instead of corn oil in the maternal diet might reduce the risk for breast cancer in female offspring.MethodsFemale SV 129 mice were divided into two groups and placed on diets containing either 10% w/w corn oil (which is 50% n-6 PUFA, control diet) or 10% w/w canola oil (which is 20% n-6 PUFA, 10% n-3 PUFA, test diet). After two weeks on the diets the females were bred with homozygous C3(1) TAg transgenic mice. Mother mice consumed the assigned diet throughout gestation and nursing of the offspring. After weaning, all female offspring were maintained on the control diet.ResultsCompared to offspring of mothers fed the corn oil diet (CO/CO group), offspring of mothers fed the canola oil diet (CA/CO group) had significantly fewer mammary glands with tumors throughout the experiment. At 130 days of age, the CA/CO group had significantly fewer tumors per mouse (multiplicity); the tumor incidence (fraction of mice with any tumor) and the total tumor weight (per mouse that developed tumor) was less than one half that of the CO/CO group. At 170 days of age, the total tumor weight per mouse was significantly less in the CA/CO group and if a tumor developed the rate of tumor growth rate was half that of CO/CO group. These results indicate that maternal consumption of canola oil was associated with delayed appearance of mammary gland tumors and slowed growth of the tumors that developed.ConclusionsSubstituting canola oil for corn oil is an easy dietary change for people to make; such a change to the maternal diet may decrease risk for breast cancer in the daughter.
Angiogenesis | 2012
Kathleen C. Brown; Jamie K. Lau; Aaron M. Dom; Theodore R. Witte; Haitao Luo; Clayton M. Crabtree; Yashoni H. Shah; Brandon S. Shiflett; Aileen J. Marcelo; Nancy A. Proper; W. Elaine Hardman; Richard D. Egleton; Yi Charlie Chen; Elsa I. Mangiarua; Piyali Dasgupta
Small cell lung cancer (SCLC) demonstrates a strong etiological association with smoking. Although cigarette smoke is a mixture of about 4,000 compounds, nicotine is the addictive component of cigarette smoke. Several convergent studies have shown that nicotine promotes angiogenesis in lung cancers via the α7-nicotinic acetylcholine receptor (α7-nAChR) on endothelial cells. Therefore, we conjectured that α7-nAChR antagonists may attenuate nicotine-induced angiogenesis and be useful for the treatment of human SCLC. For the first time, our study explores the anti-angiogenic activity of MG624, a small-molecule α7-nAChR antagonist, in several experimental models of angiogenesis. We observed that MG624 potently suppressed the proliferation of primary human microvascular endothelial cells of the lung (HMEC-Ls). Furthermore, MG624 displayed robust anti-angiogenic activity in the Matrigel, rat aortic ring and rat retinal explant assays. The anti-angiogenic activity of MG624 was assessed by two in vivo models, namely the chicken chorioallantoic membrane model and the nude mice model. In both of these experimental models, MG624 inhibited angiogenesis of human SCLC tumors. Most importantly, the administration of MG624 was not associated with any toxic side effects, lethargy or discomfort in the mice. The anti-angiogenic activity of MG624 was mediated via the suppression of nicotine-induced FGF2 levels in HMEC-Ls. MG624 decreased nicotine-induced early growth response gene 1 (Egr-1) levels in HMEC-Ls, and reduced the levels of Egr-1 on the FGF2 promoter. Consequently, this process decreased FGF2 levels and angiogenesis. Our findings suggest that the anti-angiogenic effects of MG624 could be useful in anti-angiogenic therapy of human SCLCs.
Journal of Nutritional Biochemistry | 2015
Michael A. Tsoukas; Byung-Joon Ko; Theodore R. Witte; Fadime Dincer; W. Elaine Hardman; Christos S. Mantzoros
Colorectal cancer, unlike many other malignancies, may be preventable. Recent studies have demonstrated an inverse association between nut consumption and incidence of colon cancer; however, the underlying mechanisms are not fully understood. An emerging concept suggests that microribonucleic acids (miRNAs) may help explain the relationship between walnut consumption and decreased colorectal neoplasia risk. Seven days after HT-29 colon cancer cell injection, mice were randomized to either control or walnut diets for 25 days of diet treatment. Thirty samples of tumor and of omental adipose were analyzed to determine changes in lipid composition in each dietary group. In the tumors of the walnut-containing diet, we found significant increases in α-linolenic, eicosapentaenoic, docosahexaenoic and total omega-3 acids, and a decrease in arachidonic acid, as compared to the control diet. Final tumor size measured at sacrifice was negatively associated with percentage of total omega-3 fatty acid composition (r=-0.641, P=.001). MicroRNA expression analysis of colorectal tumor tissue revealed decreased expression of miRNAs 1903, 467c and 3068 (P<.05) and increased expression of miRNA 297a* (P=.0059) in the walnut-treated group as compared to control diet. Our results indicate that changes in the miRNA expression profiles likely affect target gene transcripts involved in pathways of anti-inflammation, antivascularization, antiproliferation and apoptosis. We also demonstrate the incorporation of protective fatty acids into colonic epithelium of walnut-fed mice, which may independently alter miRNA expression profiles itself. Future studies of the mechanism of widespread miRNA regulation by walnut consumption are needed to offer potential prognostic and therapeutic targets.
Cancer Investigation | 2013
Russel J. Reiter; Dun Xian Tan; Lucien C. Manchester; Ahmet Korkmaz; Lorena Fuentes-Broto; W. Elaine Hardman; Sergio Rosales-Corral; Wenbo Qi
It was investigated whether a standard mouse diet (AIN-76A) supplemented with walnuts reduced the establishment and growth of LNCaP human prostate cancer cells in nude (nu/nu) mice. The walnut-enriched diet reduced the number of tumors and the growth of the LNCaP xenografts; 3 of 16 (18.7%) of the walnut-fed mice developed tumors; conversely, 14 of 32 mice (44.0%) of the control diet-fed animals developed tumors. Similarly, the xenografts in the walnut-fed animals grew more slowly than those in the control diet mice. The final average tumor size in the walnut-diet animals was roughly one-fourth the average size of the prostate tumors in the mice that ate the control diet.