Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Fundamenski is active.

Publication


Featured researches published by W. Fundamenski.


Nuclear Fusion | 2007

Chapter 4: Power and particle control

A. Loarte; B. Lipschultz; A. Kukushkin; G. F. Matthews; P.C. Stangeby; N. Asakura; G. Counsell; G. Federici; A. Kallenbach; K. Krieger; A. Mahdavi; V. Philipps; D. Reiter; J. Roth; J. D. Strachan; D.G. Whyte; R.P. Doerner; T. Eich; W. Fundamenski; A. Herrmann; M.E. Fenstermacher; Ph. Ghendrih; M. Groth; A. Kirschner; S. Konoshima; B. LaBombard; P. T. Lang; A.W. Leonard; P. Monier-Garbet; R. Neu

Progress, since the ITER Physics Basis publication (ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137–2664), in understanding the processes that will determine the properties of the plasma edge and its interaction with material elements in ITER is described. Experimental areas where significant progress has taken place are energy transport in the scrape-off layer (SOL) in particular of the anomalous transport scaling, particle transport in the SOL that plays a major role in the interaction of diverted plasmas with the main-chamber material elements, edge localized mode (ELM) energy deposition on material elements and the transport mechanism for the ELM energy from the main plasma to the plasma facing components, the physics of plasma detachment and neutral dynamics including the edge density profile structure and the control of plasma particle content and He removal, the erosion of low- and high-Z materials in fusion devices, their transport to the core plasma and their migration at the plasma edge including the formation of mixed materials, the processes determining the size and location of the retention of tritium in fusion devices and methods to remove it and the processes determining the efficiency of the various fuelling methods as well as their development towards the ITER requirements. This experimental progress has been accompanied by the development of modelling tools for the physical processes at the edge plasma and plasma–materials interaction and the further validation of these models by comparing their predictions with the new experimental results. Progress in the modelling development and validation has been mostly concentrated in the following areas: refinement in the predictions for ITER with plasma edge modelling codes by inclusion of detailed geometrical features of the divertor and the introduction of physical effects, which can play a major role in determining the divertor parameters at the divertor for ITER conditions such as hydrogen radiation transport and neutral–neutral collisions, modelling of the ion orbits at the plasma edge, which can play a role in determining power deposition at the divertor target, models for plasma–materials and plasma dynamics interaction during ELMs and disruptions, models for the transport of impurities at the plasma edge to describe the core contamination by impurities and the migration of eroded materials at the edge plasma and its associated tritium retention and models for the turbulent processes that determine the anomalous transport of energy and particles across the SOL. The implications for the expected performance of the reference regimes in ITER, the operation of the ITER device and the lifetime of the plasma facing materials are discussed.


Physics of Plasmas | 2006

Radial interchange motions of plasma filaments

O. E. Garcia; N. H. Bian; W. Fundamenski

Radial convection of isolated filamentary structures due to interchange motions in magnetized plasmas is investigated. Following a basic discussion of vorticity generation, ballooning, and the role of sheaths, a two-field interchange model is studied by means of numerical simulations on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends on the amount of collisional diffusion and viscosity, the structure travels a radial distance many times its initial size in all parameter regimes in the absence of sheath dissipation. In the ideal limit, there is an inertial scaling for the maximum radial velocity of isolated filaments. This velocity scales as the acoustic speed times the square root of the structure size relative to the length scale of the magnetic field. The plasma filament eventually decelerates due to mixing and collisional dissipation. Finally, the role of sheath dissipation is investigated. When included in the simulations, it significantly reduces the radial velocity of isolated filaments. The results are discussed in the context of convective transport in scrape-off layer plasmas, comprising both blob-like structures in low confinement modes and edge localized mode filaments in unstable high confinement regimes.


Nuclear Fusion | 2007

Plasma?surface interaction, scrape-off layer and divertor physics: implications for ITER

B. Lipschultz; X. Bonnin; G. Counsell; A. Kallenbach; A. Kukushkin; K. Krieger; A.W. Leonard; A. Loarte; R. Neu; R. Pitts; T.D. Rognlien; J. Roth; C.H. Skinner; J. L. Terry; E. Tsitrone; D.G. Whyte; Stewart J. Zweben; N. Asakura; D. Coster; R.P. Doerner; R. Dux; G. Federici; M.E. Fenstermacher; W. Fundamenski; Ph. Ghendrih; A. Herrmann; J. Hu; S. I. Krasheninnikov; G. Kirnev; A. Kreter

Recent research in scrape-off layer (SOL) and divertor physics is reviewed; new and existing data from a variety of experiments have been used to make cross-experiment comparisons with implications for further research and ITER. Studies of the region near the separatrix have addressed the relationship of profiles to turbulence as well as the scaling of the parallel power flow. Enhanced low-field side radial transport is implicated as driving parallel flows to the inboard side. The medium-n nature of edge localized modes (ELMs) has been elucidated and new measurements have determined that they carry ~10?20% of the ELM energy to the far SOL with implications for ITER limiters and the upper divertor. The predicted divertor power loads for ITER disruptions are reduced while those to main chamber plasma facing components (PFCs) increase. Disruption mitigation through massive gas puffing is successful at reducing PFC heat loads. New estimates of ITER tritium retention have shown tile sides to play a significant role; tritium cleanup may be necessary every few days to weeks. ITERs use of mixed materials gives rise to a reduction of surface melting temperatures and chemical sputtering. Advances in modelling of the ITER divertor and flows have enhanced the capability to match experimental data and predict ITER performance.


Plasma Physics and Controlled Fusion | 2006

Interchange turbulence in the TCV scrape-off layer

Odd Erik Garcia; J. Horacek; R.A. Pitts; Anders Henry Nielsen; W. Fundamenski; J. P. Graves; V. Naulin; J. Juul Rasmussen

Probe measurements of electrostatic plasma fluctuations in the scrape-off layer (SOL) of the TCV tokamak are compared with the results from two-dimensional interchange turbulence simulations. Excellent agreement is found for both the radial variation of statistical moments and temporal correlations, clearly indicating that turbulent transport in the tokamak SOL is due to radial advection of blob-like filamentary structures. This offers an explanation both for the basic mechanism driving the anomalous SOL particle transport and the now commonly observed broad particle density profiles, extending deep into the SOL and thought to be the cause of high levels of main chamber plasma-wall interactions.


Physica Scripta | 2007

Transient heat loads in current fusion experiments, extrapolation to ITER and consequences for its operation

A. Loarte; G. Saibene; R. Sartori; V. Riccardo; P. Andrew; J. Paley; W. Fundamenski; T. Eich; A. Herrmann; G. Pautasso; A. Kirk; G. Counsell; G. Federici; G. Strohmayer; D. Whyte; A. Leonard; R.A. Pitts; I. Landman; B. Bazylev; S. Pestchanyi

New experimental results on transient loads during ELMs and disruptions in present divertor tokamaks are described and used to carry out a extrapolation to ITER reference conditions and to draw consequences for its operation. In particular, the achievement of low energy/convective type I edge localized modes (ELMs) in ITER-like plasma conditions seems the only way to obtain transient loads which may be compatible with an acceptable erosion lifetime of plasma facing components (PFCs) in ITER. Power loads during disruptions, on the contrary, seem to lead in most cases to an acceptable divertor lifetime because of the relatively small plasma thermal energy remaining at the thermal quench and the large broadening of the power flux footprint during this phase. These conclusions are reinforced by calculations of the expected erosion lifetime, under these load conditions, which take into account a realistic temporal dependence of the power fluxes on PFCs during ELMs and disruptions.


Nuclear Fusion | 2007

Fluctuations and transport in the TCV scrape-off layer

O.E. Garcia; J. Horacek; R.A. Pitts; Arne Hejde Nielsen; W. Fundamenski; V. Naulin; J. Juul Rasmussen

Fluctuations and particle transport in the scrape-off layer of TCV plasmas have been investigated by probe measurements and direct comparison with two-dimensional interchange turbulence simulations at the outer midplane. The experiments demonstrate that with increasing line-averaged core plasma density, the radial particle density profile scale length becomes broader. The particle and radial flux density statistics in the far scrape-off layer exhibit a high degree of statistical similarity with respect to changes in the line-averaged density. The plasma flux onto the main chamber wall at the outer midplane scales linearly with the local particle density, suggesting that the particle flux here can be parameterized in terms of an effective convection velocity. Experimental probe measurements also provide evidence for significant parallel flows in the scrape-off layer caused by ballooning in the transport of particles and heat into the scrape-off layer. The magnitude of this flow estimated from pressure fluctuation statistics is found to compare favourably with the measured flow offset derived by averaging data obtained from flow profiles observed in matched forward and reversed field discharges. An interchange turbulence simulation has been performed for a single, relatively high density case, where comparison between code and experiment has been possible. Good agreement is found for almost all aspects of the experimental measurements, indicating that plasma fluctuations and transport in TCV scrape-off layer plasmas are dominated by radial motion of filamentary structures.


Nuclear Fusion | 2009

Blob/hole formation and zonal-flow generation in the edge plasma of the JET tokamak

V. Naulin; W. Fundamenski; C. Hidalgo; C. Silva; J. Juul Rasmussen; M. Stamp

The first experimental evidence showing the connection between blob/hole formation and zonal-flow generation was obtained in the edge plasma of the JET tokamak. Holes as well as blobs are observed to be born in the edge shear layer, where zonal-flows shear off meso-scale coherent structures, leading to disconnection of positive and negative pressure perturbations. The newly formed blobs transport azimuthal momentum up the gradient of the azimuthal flow and drive the zonal-flow shear while moving outwards. During this process energy is transferred from the meso-scale coherent structures to the zonal flows via the turbulent Reynolds stress, resulting in nonlinear saturation of edge turbulence and suppression of meso-scale fluctuations. These findings carry significant implications for the mechanism of structure formation in magnetically confined plasma turbulence.


Plasma Physics and Controlled Fusion | 2006

A model of ELM filament energy evolution due to parallel losses

W. Fundamenski; R.A. Pitts

In this paper, two simplified models of edge localized mode (ELM) power exhaust are developed, one based on the kinetic and the other on the fluid treatment of parallel losses. These models are found to capture many (though not all) of the salient features of kinetic simulations at substantial savings in both cost and complexity (CPU time in seconds versus days), making them ideal as real time interpretive tools or as modules in non-linear MHD, transport and/or turbulence codes. The kinetic model offers analytic expressions for the ion and electron powers deposited on the divertor, parametrized in terms of transient sheath energy transmission coefficients γi and γe, in good agreement with particle-in-cell simulations. The fluid model successfully reproduces ELM filament densities and electron energies measured at the outer poloidal limiter on JET, as well as recent measurements of ELM filament ion energies in the JET far-scrape-off layer (SOL). Taking confidence from this favourable comparison, the same model is then used to predict ion impact energies due to the incidence of Type-I ELM filaments on the ITER limiter. Although the models are applied here exclusively to ELMs, they have a potential application to other tokamak transients, such as intermittent SOL bursts and the disruption thermal quench.


Physics of Plasmas | 2004

Characterization of pedestal parameters and edge localized mode energy losses in the Joint European Torus and predictions for the International Thermonuclear Experimental Reactor

A. Loarte; G. Saibene; R. Sartori; T. Eich; A. Kallenbach; W. Suttrop; M. Kempenaars; M. Beurskens; M. de Baar; J. Lönnroth; P. Lomas; Guy Matthews; W. Fundamenski; V. Parail; M. Becoulet; P. Monier-Garbet; E. de la Luna; B. Gonçalves; C. Silva; Y. Corre

This paper presents the experimental characterization of pedestal parameters, edge localized mode (ELM) energy, and particle losses from the main plasma and the corresponding ELM energy fluxes on plasma facing components for a series of dedicated experiments in the Joint European Torus (JET). From these experiments, it is demonstrated that the simple hypothesis relating the peeling-ballooning linear instability to ELM energy losses is not valid. Contrary to previous observations at lower triangularities, small energy losses at low collisionality have been obtained in regimes at high plasma triangularity and q95∼4.5, indicating that the edge plasma magnetohydrodynamic stability is linked with the transport mechanisms that lead to the loss of energy by conduction during type I ELMs. Measurements of the ELM energy fluxes on the divertor target show that their time scale is linked to the ion transport along the field and the formation of a high energy sheath, in agreement with kinetic modeling of ELMs. Higher...


Plasma Physics and Controlled Fusion | 2004

A comparison of experimental measurements and code results to determine flows in the JET SOL

S K Erents; R.A. Pitts; W. Fundamenski; J. Gunn; G. F. Matthews

Two reciprocating probe systems, at the same poloidal position at the top of the JET torus but toroidally separated by 180degrees, have been used to measure parallel flow in the scrape-off layer (SOL) of lower single-null, diverted plasmas. One system uses the entrance slit plates of a retarding field analyser to record upstream and downstream flux densities, whilst the second employs two pins of a nine-pin turbulent transport probe. Measurements have been made for both forward and reversed toroidal field directions. The results from both probe systems are similar. In the forward field direction, that is with the ion B x del(B) over right arrow drift direction downwards towards the divertor, a strong parallel flow is measured at the top of the machine in the direction from the outer to the inner divertor. The flow generally has a low value, Mach number M similar to 0.2, close to the separatrix, but rises in the region of high magnetic shear close to the separatrix to a maximum of M similar to 0.5 some 20 mm outside the separatrix. In contrast, for a reversed field, the measured flow is small (close to zero) throughout much of the SOL but rises near the separatrix to a value equal in both magnitude and direction to that observed in the forward field. There is thus some symmetry in the flow with respect to field reversal but with a symmetry axis given by a positive offset of around M similar to 0.2. This paper presents simulations using the EDGE2D/Nimbus code, which predicts very low values of parallel flow Mach number near the probe position. The possibility of impurities released from the probe surfaces increasing the flow velocity is explored using the code.

Collaboration


Dive into the W. Fundamenski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Huber

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

V. Naulin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jet-Efda Contributors

International Atomic Energy Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Juul Rasmussen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. Philipps

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge