W. G. van der Wiel
MESA+ Institute for Nanotechnology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. G. van der Wiel.
Reviews of Modern Physics | 2002
W. G. van der Wiel; S. De Franceschi; J. M. Elzerman; Toshimasa Fujisawa; S. Tarucha; Leo P. Kouwenhoven
Electron transport experiments on two lateral quantum dots coupled in series are reviewed. An introduction to the charge stability diagram is given in terms of the electrochemical potentials of both dots. Resonant tunneling experiments show that the double dot geometry allows for an accurate determination of the intrinsic lifetime of discrete energy states in quantum dots. The evolution of discrete energy levels in magnetic field is studied. The resolution allows one to resolve avoided crossings in the spectrum of a quantum dot. With microwave spectroscopy it is possible to probe the transition from ionic bonding (for weak interdot tunnel coupling) to covalent bonding (for strong interdot tunnel coupling) in a double dot artificial molecule. This review is motivated by the relevance of double quantum dot studies for realizing solid state quantum bits.
Nature Materials | 2007
Alexander Brinkman; Mark Huijben; M. van Zalk; J. Huijben; U. Zeitler; J.C. Maan; W. G. van der Wiel; Guus Rijnders; Dave H.A. Blank; H. Hilgenkamp
The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman-Kittel-Kasuya-Yosida interactions, the Kondo effect and carrier-induced ferromagnetism in diluted magnetic semiconductors. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.
Nature | 1998
T. H. Oosterkamp; Toshimasa Fujisawa; W. G. van der Wiel; Koji Ishibashi; R. V. Hijman; Seigo Tarucha; Leo P. Kouwenhoven
Quantum dots are small conductive regions in a semiconductor, containing a variable number of electrons (from one to a thousand) that occupy well-defined, discrete quantum states—for which reason they are often referred to as artificial atoms. Connecting them to current and voltage contacts allows the discrete energy spectra to be probed by charge-transport measurements. Two quantum dots can be connected to form an ‘artificial molecule’. Depending on the strength of the inter-dot coupling (which supports quantum-mechanical tunnelling of electrons between the dots), the two dots can form ‘ionic’ (refs 2–;6) or ‘covalent’ bonds. In the former case, the electrons are localized on individual dots, while in the latter, the electrons are delocalized over both dots. The covalent binding leads to bonding and antibonding states, whose energy difference is proportional to the degree of tunnelling. Here we report a transition from ionic bonding to covalent bonding in a quantum-dot ‘artificial molecule’ that is probed by microwave excitations. Our results demonstrate controllable quantum coherence in single-electron devices, an essential requirement for practical applications of quantum-dot circuitry.
Science | 2000
W. G. van der Wiel; S. De Franceschi; Toshimasa Fujisawa; J. M. Elzerman; S. Tarucha; Leo P. Kouwenhoven
We observe a strong Kondo effect in a semiconductor quantum dot when a small magnetic field is applied. The Coulomb blockade for electron tunneling is overcome completely by the Kondo effect, and the conductance reaches the unitary limit value. We compare the experimental Kondo temperature with the theoretical predictions for the spin- 12 Anderson impurity model. Excellent agreement is found throughout the Kondo regime. Phase coherence is preserved when a Kondo quantum dot is included in one of the arms of an Aharonov-Bohm ring structure, and the phase behavior differs from previous results on a non-Kondo dot.
Nature | 2000
Satoshi Sasaki; S. De Franceschi; J. M. Elzerman; W. G. van der Wiel; Mikio Eto; S. Tarucha; Leo P. Kouwenhoven
The Kondo effect—a many-body phenomenon in condensed-matter physics involving the interaction between a localized spin and free electrons—was discovered in metals containing small amounts of magnetic impurities, although it is now recognized to be of fundamental importance in a wide class of correlated electron systems. In fabricated structures, the control of single, localized spins is of technological relevance for nanoscale electronics. Experiments have already demonstrated artificial realizations of isolated magnetic impurities at metallic surfaces, nanoscale magnets, controlled transitions between two-electron singlet and triplet states, and a tunable Kondo effect in semiconductor quantum dots. Here we report an unexpected Kondo effect in a few-electron quantum dot containing singlet and triplet spin states, whose energy difference can be tuned with a magnetic field. We observe the effect for an even number of electrons, when the singlet and triplet states are degenerate. The characteristic energy scale is much larger than in the ordinary spin-1/2 case.
Physical Review Letters | 2001
S. De Franceschi; Satoshi Sasaki; J. M. Elzerman; W. G. van der Wiel; S. Tarucha; Leo P. Kouwenhoven
We report transport measurements on a semiconductor quantum dot with a small number of confined electrons. In the Coulomb blockade regime, conduction is dominated by cotunneling processes. These can be either elastic or inelastic, depending on whether they leave the dot in its ground state or drive it into an excited state, respectively. We are able to discriminate between these two contributions and show that inelastic events can occur only if the applied bias exceeds the lowest excitation energy. Implications to energy-level spectroscopy are discussed.
Nature Materials | 2012
M. Veldhorst; M. Snelder; M. Hoek; Tian Gang; V. K. Guduru; Xiaolin Wang; U. Zeitler; W. G. van der Wiel; Alexandre Avraamovitch Golubov; H. Hilgenkamp; Alexander Brinkman
The long-sought yet elusive Majorana fermion is predicted to arise from a combination of a superconductor and a topological insulator. An essential step in the hunt for this emergent particle is the unequivocal observation of supercurrent in a topological phase. Here, direct evidence for Josephson supercurrents in superconductor (Nb)-topological insulator (Bi(2)Te(3))-superconductor electron-beam fabricated junctions is provided by the observation of clear Shapiro steps under microwave irradiation, and a Fraunhofer-type dependence of the critical current on magnetic field. Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a topologically non-trivial two-dimensional surface state. This surface state is attributed to mediate the ballistic Josephson current despite the fact that the normal state transport is dominated by diffusive bulk conductivity. The lateral Nb-Bi(2)Te(3)-Nb junctions hence provide prospects for the realization of devices supporting Majorana fermions.
Physical Review Letters | 2000
S. Tarucha; D. G. Austing; Yasuhiro Tokura; W. G. van der Wiel; Leo P. Kouwenhoven
We determine contributions from the direct Coulomb and exchange interactions to the total interaction in artificial semiconductor atoms. We tune the relative strengths of the two interactions and measure them as a function of the number of confined electrons. The electrons tend to have parallel spins when they occupy nearly degenerate single-particle states. We use a magnetic field to adjust the single-particle-state degeneracy, and find that the spin configurations in an arbitrary magnetic field are well explained in terms of two-electron singlet and triplet states.
Physical Review Letters | 2002
W. G. van der Wiel; S. De Franceschi; J. M. Elzerman; S. Tarucha; Leo P. Kouwenhoven; Junichi Motohisa; Fumito Nakajima; Takashi Fukui
We report a strong Kondo effect (Kondo temperature approximately 4 K) at high magnetic field in a selective area growth semiconductor quantum dot. The Kondo effect is ascribed to a singlet-triplet transition in the ground state of the dot. At the transition, the low-temperature conductance approaches the unitary limit. Away from the transition, for low bias voltages and temperatures, the conductance is sharply reduced. The observed behavior is compared to predictions for a two-stage Kondo effect in quantum dots coupled to single-channel leads.
Applied Physics Letters | 2011
T.L.A. Tran; Ping Kwan Johnny Wong; M.P. de Jong; W. G. van der Wiel; Y.Q. Zhan; M. Fahlman
We have studied the electronic and magnetic properties of the interface between C60 molecules and a Fe001 surface. X-ray absorption spectroscopy and x-ray magnetic circular dichroism studies of C60 monolayers on Fe001 surfaces show that hybridization between the frontier orbitals of C60 and continuum states of Fe leads to a significant magnetic polarization of C60 -derived orbitals. The magnitude and also the sign of this polarization were found to depend markedly on the excitation energy. These observations underline the importance of tailoring the interfacial spin polarization at the Fermi level of ferromagnet/organic semiconductor interfaces for applications in organic spintronics.