Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Goetz is active.

Publication


Featured researches published by W. Goetz.


Science | 2009

H2O at the Phoenix Landing Site

Peter W. H. Smith; Leslie Kay Tamppari; Raymond E. Arvidson; D. S. Bass; Diana L. Blaney; William V. Boynton; A. Carswell; David C. Catling; B. C. Clark; Thomas J. Duck; Eric DeJong; David A. Fisher; W. Goetz; H. P. Gunnlaugsson; Michael H. Hecht; V. J. Hipkin; John H. Hoffman; S. F. Hviid; H. U. Keller; Samuel P. Kounaves; Carlos F. Lange; Mark T. Lemmon; M. B. Madsen; W. J. Markiewicz; J. Marshall; Christopher P. McKay; Michael T. Mellon; D. W. Ming; Richard V. Morris; W. T. Pike

Phoenix Ascending The Phoenix mission landed on Mars in March 2008 with the goal of studying the ice-rich soil of the planets northern arctic region. Phoenix included a robotic arm, with a camera attached to it, with the capacity to excavate through the soil to the ice layer beneath it, scoop up soil and water ice samples, and deliver them to a combination of other instruments—including a wet chemistry lab and a high-temperature oven combined with a mass spectrometer—for chemical and geological analysis. Using this setup, Smith et al. (p. 58) found a layer of ice at depths of 5 to 15 centimeters, Boynton et al. (p. 61) found evidence for the presence of calcium carbonate in the soil, and Hecht et al. (p. 64) found that most of the soluble chlorine at the surface is in the form of perchlorate. Together these results suggest that the soil at the Phoenix landing site must have suffered alteration through the action of liquid water in geologically the recent past. The analysis revealed an alkaline environment, in contrast to that found by the Mars Exploration Rovers, indicating that many different environments have existed on Mars. Phoenix also carried a lidar, an instrument that sends laser light upward into the atmosphere and detects the light scattered back by clouds and dust. An analysis of the data by Whiteway et al. (p. 68) showed that clouds of ice crystals that precipitated back to the surface formed on a daily basis, providing a mechanism to place ice at the surface. A water ice layer was found 5 to 15 centimeters beneath the soil of the north polar region of Mars. The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5° and 148°). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H2O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO3, aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.


Science | 2013

Martian Fluvial Conglomerates at Gale Crater

Rebecca M. E. Williams; John P. Grotzinger; William E. Dietrich; S. Gupta; Dawn Y. Sumner; Roger C. Wiens; Nicolas Mangold; M. C. Malin; Kenneth S. Edgett; Sylvestre Maurice; O. Forni; O. Gasnault; A. M. Ollila; H. Newsom; Gilles Dromart; Marisa C. Palucis; R. A. Yingst; R. B. Anderson; K. E. Herkenhoff; S. Le Mouélic; W. Goetz; M. B. Madsen; A. Koefoed; J. K. Jensen; John C. Bridges; S. P. Schwenzer; Kevin W. Lewis; K. Stack; David M. Rubin; L. C. Kah

Going to Mars The Mars Science Laboratory spacecraft containing the Curiosity rover, was launched from Earth in November 2011 and arrived at Gale crater on Mars in August 2012. Zeitlin et al. (p. 1080) report measurements of the energetic particle radiation environment inside the spacecraft during its cruise to Mars, confirming the hazard likely to be posed by this radiation to astronauts on a future potential trip to Mars. Williams et al. (p. 1068, see the Perspective by Jerolmack) report the detection of sedimentary conglomerates (pebbles mixed with sand and turned to rock) at Gale crater. The rounding of the rocks suggests abrasion of the pebbles as they were transported by flowing water several kilometers or more from their source. Observations from the Curiosity rover of rounded pebbles in sedimentary rocks confirm ancient water flows on Mars. [Also see Perspective by Jerolmack] Observations by the Mars Science Laboratory Mast Camera (Mastcam) in Gale crater reveal isolated outcrops of cemented pebbles (2 to 40 millimeters in diameter) and sand grains with textures typical of fluvial sedimentary conglomerates. Rounded pebbles in the conglomerates indicate substantial fluvial abrasion. ChemCam emission spectra at one outcrop show a predominantly feldspathic composition, consistent with minimal aqueous alteration of sediments. Sediment was mobilized in ancient water flows that likely exceeded the threshold conditions (depth 0.03 to 0.9 meter, average velocity 0.20 to 0.75 meter per second) required to transport the pebbles. Climate conditions at the time sediment was transported must have differed substantially from the cold, hyper-arid modern environment to permit aqueous flows across several kilometers.


Journal of Geophysical Research | 2008

Microscopy capabilities of the Microscopy, Electrochemistry, and Conductivity Analyzer

Michael H. Hecht; J. Marshall; W. T. Pike; Urs Staufer; Diana L. Blaney; D. Braendlin; S. Gautsch; W. Goetz; H.-R. Hidber; H. U. Keller; W. J. Markiewicz; A. Mazer; T. P. Meloy; John Michael Morookian; C. Mogensen; D. Parrat; Peter W. H. Smith; H. Sykulska; R. Tanner; Robert O. Reynolds; A. Tonin; S. Vijendran; M. Weilert; P. Woida

The Phoenix microscopy station, designed for the study of Martian dust and soil,consists of a sample delivery system, an optical microscope, and an atomic force microscope. The combination of microscopies facilitates the study of features from the millimeter to nanometer scale. Light-emitting diode illumination allows for full color optical imaging of the samples as well as imaging of ultraviolet-induced visible fluorescence. The atomic force microscope uses an array of silicon tips and can operate in both static and dynamic mode.


Science | 2013

Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow

David F. Blake; Richard V. Morris; Gary Kocurek; Shaunna M. Morrison; Robert T. Downs; David L. Bish; Douglas W. Ming; Kenneth S. Edgett; David M. Rubin; W. Goetz; M. B. Madsen; R. Sullivan; R. Gellert; I. Campbell; Allan H. Treiman; Scott M. McLennan; Albert S. Yen; John P. Grotzinger; D. T. Vaniman; S. J. Chipera; C. N. Achilles; E. B. Rampe; Dawn Y. Sumner; P.-Y. Meslin; Sylvestre Maurice; O. Forni; O. Gasnault; Martin R. Fisk; M. Schmidt; Paul R. Mahaffy

The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.


Science | 2013

Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars

P.-Y. Meslin; O. Gasnault; Olivier Forni; S. Schröder; A. Cousin; G. Berger; S. M. Clegg; J. Lasue; S. Maurice; Violaine Sautter; S. Le Mouélic; Roger C. Wiens; C. Fabre; W. Goetz; David L. Bish; Nicolas Mangold; Bethany L. Ehlmann; N. Lanza; A.-M. Harri; R. B. Anderson; E. B. Rampe; Timothy H. McConnochie; P. Pinet; Diana L. Blaney; R. Leveille; D. Archer; B. L. Barraclough; Steve Bender; D. Blake; Jennifer G. Blank

The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.


Science | 2004

Pancam Multispectral Imaging Results from the Opportunity Rover at Meridiani Planum

James F. Bell; S. W. Squyres; Raymond E. Arvidson; H. M. Arneson; D. S. Bass; Wendy M. Calvin; William H. Farrand; W. Goetz; M. P. Golombek; Ronald Greeley; John P. Grotzinger; Edward A. Guinness; Alexander G. Hayes; M. Y. H. Hubbard; K. E. Herkenhoff; M. J. Johnson; James Richard Johnson; Jonathan Joseph; K. M. Kinch; Mark T. Lemmon; R. Li; M. B. Madsen; J. N. Maki; M. C. Malin; E. McCartney; Scott M. McLennan; Harry Y. McSween; D. W. Ming; Richard V. Morris; E. Z. Noe Dobrea

Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron–rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.


Journal of Geophysical Research | 1997

The Imager for Mars Pathfinder experiment

Peter W. H. Smith; Martin G. Tomasko; Daniel T. Britt; D. G. Crowe; Richard J. Reid; H. U. Keller; Nicolas Thomas; F. Gliem; P. Rueffer; Robert John Sullivan; Ronald Greeley; J. M. Knudsen; M. B. Madsen; H. P. Gunnlaugsson; S. F. Hviid; W. Goetz; Laurence A. Soderblom; Lisa R. Gaddis; R. Kirk

The imager for Mars Pathfinder (IMP), a stereoscopic, multispectral camera, is described in terms of its capabilities for studying the Martian environment. The cameras two eyes, separated by 15.0 cm, provide the camera with range-finding ability. Each eye illuminates half of a single CCD detector with a field of view of 14.4×14.0° and has 12 selectable filters. The ƒ/18 optics have a large depth of field, and no focussing mechanism is required; a mechanical shutter is avoided by using the frame transfer capability of the 512×512 CCD. The resolving power of the camera, 0.98 mrad/pixel, is approximately the same as the Viking Lander cameras; however, the signal-to-noise ratio for IMP greatly exceeds Viking, approaching 350. This feature along with the stable calibration of the filters between 440 and 1000 nm distinguishes IMP from Viking. Specially designed targets are positioned on the Lander; they provide information on the magnetic properties of wind-blown dust, measure the wind vectors, and provide radiometric standard reflectors for calibration. Also, eight low-transmission filters are included for imaging the Sun directly at multiple wavelengths, giving IMP the ability to measure dust opacity and potentially the water vapor content. Several experiments beyond the requisite color panorama are described in detail: contour mapping of the local terrain, multispectral imaging of the surrounding rock and soil to study local mineralogy, viewing of three wind socks, measuring atmospheric opacity and water vapor content, and estimating the magnetic properties of wind-blown dust. This paper is intended to serve as a guide to understanding the scientific integrity of the IMP data that will be returned from Mars starting on July 4, 1997.


Nature | 2005

Indication of drier periods on Mars from the chemistry and mineralogy of atmospheric dust

W. Goetz; P. Bertelsen; C. S. Binau; H. P. Gunnlaugsson; S. F. Hviid; K. M. Kinch; D. E. Madsen; M. B. Madsen; M. Olsen; Ralf Gellert; G. Klingelhöfer; D. W. Ming; Richard V. Morris; R. Rieder; D. Rodionov; P. A. de Souza; C. Schröder; S. W. Squyres; Thomas J. Wdowiak; A. Yen

The ubiquitous atmospheric dust on Mars is well mixed by periodic global dust storms, and such dust carries information about the environment in which it once formed and hence about the history of water on Mars. The Mars Exploration Rovers have permanent magnets to collect atmospheric dust for investigation by instruments on the rovers. Here we report results from Mössbauer spectroscopy and X-ray fluorescence of dust particles captured from the martian atmosphere by the magnets. The dust on the magnets contains magnetite and olivine; this indicates a basaltic origin of the dust and shows that magnetite, not maghemite, is the mineral mainly responsible for the magnetic properties of the dust. Furthermore, the dust on the magnets contains some ferric oxides, probably including nanocrystalline phases, so some alteration or oxidation of the basaltic dust seems to have occurred. The presence of olivine indicates that liquid water did not play a dominant role in the processes that formed the atmospheric dust.


Journal of Geophysical Research | 1999

The magnetic properties experiments on Mars Pathfinder

M. B. Madsen; S. F. Hviid; Haraldur Pall Gunnlaugsson; J. M. Knudsen; W. Goetz; C. T. Pedersen; A. R. Dinesen; C. T. Mogensen; Morten Tange Olsen; R. B. Hargraves

The Mars Pathfinder lander carried two magnet arrays, each containing five small permanent magnets of varying strength. The magnet arrays were passively exposed to the wind borne dust on Mars. By the end of the Mars Pathfinder mission a bulls-eye pattern was visible on the four strongest magnets of the arrays showing the presence of magnetic dust particles. From the images we conclude that the dust suspended in the atmosphere is not solely single phase particles of hematite (α-Fe2O3) and that single phase particles of the ferrimagnetic minerals maghemite (γ-Fe2O3) or magnetite (Fe3O4) are not present as free particles in any appreciable amount. The material on the strongest magnets seems to be indistinguishable from the bright surface material around the lander. From X-ray fluorescence it is known that the soil consists mainly of silicates. The element iron constitutes about 13% of the soil. The particles in the airborne dust seem to be composite, containing a few percent of a strongly magnetic component. We conclude that the magnetic phase present in the airborne dust particles is most likely maghemite. The particles thus appear to consist of silicate aggregates stained or cemented by ferric oxides, some of the stain and cement being maghemite. These results imply that Fe2+ ions were leached from the bedrock, and after passing through a state as free Fe2+ ions in liquid water, the Fe2+ was oxidized to Fe3+ and then precipitated. It cannot, however, be ruled out that the magnetic particles are titanomagnetite (or titanomaghemite) occurring in palagonite, having been inherited directly from the bedrock.


Journal of Geophysical Research | 2008

Spirit Mars Rover Mission to the Columbia Hills, Gusev Crater: Mission overview and selected results from the Cumberland Ridge to Home Plate

Raymond E. Arvidson; Steven W. Ruff; Richard V. Morris; D. W. Ming; Larry S. Crumpler; Albert S. Yen; Steven W. Squyres; R. Sullivan; James F. Bell; Nathalie A. Cabrol; B. C. Clark; William H. Farrand; R. Gellert; R. N. Greenberger; J. A. Grant; Edward A. Guinness; K. E. Herkenhoff; Joel A. Hurowitz; James Richard Johnson; G. Klingelhöfer; Kevin W. Lewis; R. Li; Timothy J. McCoy; Jeffrey Edward Moersch; Harry Y. McSween; Scott L. Murchie; Mariek E. Schmidt; Christian Schröder; Aihui H. Wang; Sandra Margot Wiseman

This paper summarizes the Spirit rover operations in the Columbia Hills of Gusev Crater from sols 513 to 1476 and provides an overview of selected findings that focus on synergistic use of the Athena Payload and comparisons to orbital data. Results include discovery of outcrops (Voltaire) on Husband Hill that are interpreted to be altered impact melt deposits that incorporated local materials during emplacement. Evidence for extensive volcanic activity and aqueous alteration in the Inner Basin is also detailed, including discovery and characterization of accretionary lapilli and formation of sulfate, silica, and hematite-rich deposits. Use of Spirits data to understand the range of spectral signatures observed over the Columbia Hills by the Mars Reconnaissance Orbiters Compact Reconnaissance Imaging Spectrometer (CRISM) hyperspectral imager (0.4–4 μm) is summarized. We show that CRISM spectra are controlled by the proportion of ferric-rich dust to ferrous-bearing igneous minerals exposed in ripples and other wind-blown deposits. The evidence for aqueous alteration derived from Spirits data is associated with outcrops that are too small to be detected from orbital observations or with materials exposed from the shallow subsurface during rover activities. Although orbital observations show many other locations on Mars with evidence for minerals formed or altered in an aqueous environment, Spirits data imply that the older crust of Mars has been altered even more extensively than evident from orbital data. This result greatly increases the potential that the surface or shallow subsurface was once a habitable regime.

Collaboration


Dive into the W. Goetz's collaboration.

Top Co-Authors

Avatar

M. B. Madsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

S. F. Hviid

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

K. Leer

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

P. Bertelsen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

K. M. Kinch

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Diana L. Blaney

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael H. Hecht

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James F. Bell

Arizona State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge