Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. H. Lamers is active.

Publication


Featured researches published by W. H. Lamers.


Molecular and Cellular Biology | 1998

Two members of the Tcf family implicated in Wnt/beta-catenin signaling during embryogenesis in the mouse

Vladimir Korinek; Nick Barker; Karl Willert; Miranda Molenaar; Jeroen P. Roose; Gerry T. M. Wagenaar; Marry W. M. Markman; W. H. Lamers; Olivier Destrée; Hans Clevers

ABSTRACT Tcf transcription factors interact with β-catenin and Armadillo to mediate Wnt/Wingless signaling. We now report the characterization of genes encoding two murine members of the Tcf family,mTcf-3 and mTcf-4. mTcf-3 mRNA is ubiquitously present in embryonic day 6.5 (E6.5) mouse embryos but gradually disappears over the next 3 to 4 days. mTcf-4 expression occurs first at E10.5 and is restricted to di- and mesencephalon and the intestinal epithelium during embryogenesis. The mTcf-3 and mTcf-4 proteins bind a canonical Tcf DNA motif and can complex with the transcriptional coactivator β-catenin. Overexpression of Wnt-1 in a mammary epithelial cell line leads to the formation of a nuclear complex between β-catenin and Tcf proteins and to Tcf reporter gene transcription. These data demonstrate a direct link between Wnt stimulation and β-catenin/Tcf transcriptional activation and imply a role formTcf-3 and -4 in early Wnt-driven developmental decisions in the mouse embryo.


Circulation Research | 1992

Persisting zones of slow impulse conduction in developing chicken hearts.

F. De Jong; Tobias Opthof; Arthur A.M. Wilde; Michiel J. Janse; R. Charles; W. H. Lamers; Antoon F. M. Moorman

We performed a correlative electrophysiological and immunohistochemical study of embryonic chicken hearts during the septational period (Hamburger and Hamilton stages 13-31 [2-7 days of incubation]). The analyses yield conclusive evidence for slow conduction, up to 7 days of development, in the outflow tract, in the atrioventricular canal, and in the sinoatrial junction. The conduction velocity remains approximately 1 cm/sec in the outflow tract and increases in the ventricle 20-fold to approximately 20 cm/sec between 2 and 7 days of development. Transmembrane potentials of myocytes in the outflow tract and atrioventricular canal slowly rise (less than 5 V/sec), whereas in the atrium and ventricle, the upstroke velocity is eightfold to 13-fold higher. In the outflow tract, repolarization is completed only after the start of the next cycle. Because of the persistence of slow conduction, the myocardium flanking the developing atria and ventricle is thought to represent segments of persisting primary myocardium, whereas the more rapidly conducting working myocardium of the ventricle and atria is thought to represent more advanced stages of myocardial differentiation. The persisting primary myocardium was characterized by a continued coexpression of both the atrial and ventricular isoforms of myosin heavy chain. The developing atria and ventricle could be demarcated morphologically from the primary myocardium because the free walls of these segments only express their respective isoforms of myosin heavy chain. The slowly conducting myocardial zones appear to be essential for the function of the embryonic heart because 1) they provide the septating heart with alternating segments of slow and relatively fast conduction necessary for consecutive contraction of the atrial and ventricular segments and 2) their sphincterlike prolonged peristaltic contraction pattern can substitute for the adult type of one-way valves that start to develop at the end of septation.


Circulation Research | 1991

Spatial distribution of connexin43, the major cardiac gap junction protein, in the developing and adult rat heart.

M. J. A. Van Kempen; C. Fromaget; D. Gros; Antoon F. M. Moorman; W. H. Lamers

The developmental appearance and spatial distribution pattern of gap junctions were studied in prenatal and adult rat hearts. Gap junctions were visualized immunohistochemically with an antibody raised against a unique cytoplasmic epitope of connexin43, and the spatial distribution pattern was determined by three-dimensional reconstruction. The results demonstrate that from embryonic day 13 onward, connexin43 becomes detectable immunohistochemically in the myocardium of atria and ventricles. No expression is initially detectable in the myocardium of the sinus venosus, the sinoatrial node, the posterior wall of the atrium and pulmonary veins, the interatrial septum, the atrioventricular canal, including atrioventricular node and bundle, the interventricular septum, and the outflow tract. The developmental increase in the density of gap junctions in atria and ventricles of prenatal hearts correlates well with the reported developmental increase in conduction velocity. Whereas connexin43 becomes expressed in the derivatives of the sinus venosus (except for the sinoatrial node) and in the subepicardial layer of the ventricular free wall shortly before birth, it remains undetectable in the atrioventricular node and bundle and the proximal part of the ventricular conduction tissue, even in the adult heart. The apparent absence of an abundant expression of connexin43 at a location with a supposedly high conduction velocity (i.e., the atrioventricular bundle and bundle branches) is unexpected. These observations were confirmed in studies of the adult mouse heart, which showed, in addition, that connexin32 is not expressed in any part of the heart.


Circulation Research | 1993

Immunohistochemical delineation of the conduction system. II: The atrioventricular node and Purkinje fibers.

Petra W. Oosthoek; S. Viragh; W. H. Lamers; Antoon F. M. Moorman

Using an antibody that reacts specifically with the myocytes of the conduction system of the bovine heart, we have studied the atrioventricular node and the spatial distribution of the Purkinje fibers in the bovine heart. This study was complemented by studying the distribution of the gap junction protein connexin43 in these areas in the bovine heart and in the human heart. The large Purkinje fibers in the bovine heart are arranged in a two-dimensional network underneath the endocardium. At discrete sites, these fibers branch to the Purkinje fibers situated between the muscle bundles of the ventricular mass. These intramural Purkinje fibers are arranged in sheets that form a complex three-dimensional network of lamellas. Contacts with the ventricular myocytes are found throughout the myocardial wall, with the exception of a subepicardial layer of 2-mm thickness, ie, 10% to 15% of the wall thickness. The spatial arrangement of the Purkinje fibers correlates well with data on electrophysiology. Connexin43 was not detected in the myocytes of the atrioventricular node, whereas in the Purkinje fibers of the atrioventricular bundle and of the bundle branches, abundant expression of connexin43 was found in both humans and cows. In the bovine Purkinje fibers, a remarkable subcellular distribution of connexin43 is found: it occupies the entire plasma membrane facing other Purkinje cells but not that facing the surrounding connective tissue. The structural differences in architecture of the ventricular conduction system in humans and cows seems not to result in substantial differences in conduction velocities. However, the Purkinje fiber network in the bovine heart may explain the efficient ventricular excitation, as reflected by the relatively short QRS complex compared with that in the human heart, where intramural Purkinje fibers are not found.


Circulation Research | 1993

Immunohistochemical delineation of the conduction system. I: The sinoatrial node.

Petra W. Oosthoek; S. Viragh; A. E. M. Mayen; M. J. A. Van Kempen; W. H. Lamers; Antoon F. M. Moorman

We have raised a mouse monoclonal antibody that reacts specifically with the myocytes of the sinoatrial node of the bovine heart. By use of this antibody (445-6E10) and antibodies against the gap junction protein connexin43, the periphery of the sinoatrial node and the distribution of gap junctions in the nodal region were studied. The reaction patterns of 445-6E10 and anti-connexin43 are exactly complementary; ie, connexin43 was not detected in the nodal myocytes but was clearly present in the atrial myocytes. Both reaction patterns demonstrate that nodal myocytes and atrial myocytes can unambiguously be distinguished by their characteristic molecular phenotype. The transitional nodal myocytes at the periphery of the node that have intermediate morphological and electrophysiological characteristics could now clearly be defined as nodal by our immunohistochemical criteria. The center of the node is surrounded by a region of interdigitating nodal and atrial bundles. Nodal bundles, coming from the center of the node, penetrate the atrial myocardium aligned at atrial bundles, forming histological connections between nodal and atrial myocytes at regular distances. This interdigitating arrangement of bundles of connexin43-negative nodal and connexin43-positive atrial myocytes is also found in the human and rat heart. We hypothesize that the architecture of the periphery of the node is important to prevent silencing of the pacemaking nodal myocytes by the atrium while ensuring a sufficient source loading of the nodal myocytes.


Nature Communications | 2011

Blimp1 regulates the transition of neonatal to adult intestinal epithelium.

Vanesa Muncan; Jarom Heijmans; Stephen D. Krasinski; Nikè V. J. A. Büller; Manon E. Wildenberg; Sander Meisner; Marijana Radonjic; Kelly A. Stapleton; W. H. Lamers; I. Biemond; Marius A. van den Bergh Weerman; Dónal O'Carroll; James C. Hardwick; Daniel W. Hommes; Gijs R. van den Brink

In many mammalian species, the intestinal epithelium undergoes major changes that allow a dietary transition from mothers milk to the adult diet at the end of the suckling period. These complex developmental changes are the result of a genetic programme intrinsic to the gut tube, but its regulators have not been identified. Here we show that transcriptional repressor B lymphocyte-induced maturation protein 1 (Blimp1) is highly expressed in the developing and postnatal intestinal epithelium until the suckling to weaning transition. Intestine-specific deletion of Blimp1 results in growth retardation and excessive neonatal mortality. Mutant mice lack all of the typical epithelial features of the suckling period and are born with features of an adult-like intestine. We conclude that the suckling to weaning transition is regulated by a single transcriptional repressor that delays epithelial maturation.


Journal of Histochemistry and Cytochemistry | 1988

Complementary distribution of carbamoylphosphate synthetase (ammonia) and glutamine synthetase in rat liver acinus is regulated at a pretranslational level.

A. F. M. Moorman; P. De Boer; W. J. C. Geerts; L van den Zande; W. H. Lamers; R. Charles

We studied the distribution of the mRNAs for carbamoylphosphate synthetase (ammonia) and glutamine synthetase in frozen sections of adult rat liver by in situ hybridization to [35S]-labeled cDNA probes. The density of silver grains resulting from hybridization to the labeled cDNA probe for carbamoylphosphate synthetase is highest around the portal venules, decreases towards the central venule, and is virtually absent from an area two to three cells wide that lines the central venules in which mRNA for glutamine synthetase is predominantly localized. Therefore, both mRNAs show the same complementary distribution within the liver acinus that was found for the proteins they encode, demonstrating that compartmentalization of the expression of these enzymes is controlled at a pretranslational level. In addition, we found that carbamoylphosphate synthetase mRNA is present mainly in the epithelium of the crypts of the proximal part of the small intestine, whereas carbamoylphosphate synthetase protein is present in the epithelium of both crypts and villi.


Circulation Research | 2007

Trabeculated Right Ventricular Free Wall in the Chicken Heart Forms by Ventricularization of the Myocardium Initially Forming the Outflow Tract

M. Sameer Rana; Noortje C.A. Horsten; Sabina Tesink-Taekema; W. H. Lamers; Antoon F. M. Moorman; Maurice J.B. van den Hoff

Recent molecular lineage analyses in mouse have demonstrated that the right ventricle is recruited from anterior mesoderm in later stages of cardiac development. This is in contrast to current views of development in the chicken heart, which suggest that the initial heart tube contains a subset of right ventricular precursors. We investigated the fate of the outflow tract myocardium using immunofluorescent staining of the myocardium, and lineage tracer, as well as cell death experiments. These analyses showed that the outflow tract is initially myocardial in its entirety, increasing in length up to HH24. The outflow tract myocardium, subsequently, shortens as a result of ventricularization, contributing to the trabeculated free wall, as well as the infundibulum, of the right ventricle. During this shortening, the overall length of the outflow tract is maintained because of the formation of a nonmyocardial portion between the distal myocardial border and the pericardial reflections. Cell death and transdifferentiation were found to play a more limited contribution to the initial shortening than is generally appreciated, if they play any part at all. Cell death, nonetheless, plays an important role in the disappearance of the myocardial collar that continues to invest the aorta and pulmonary trunk around HH30, and in the separation of the intrapericardial arterial vessels. Taken together, we show, as opposed to some current beliefs, the development of the arterial pole is similar in mammals and birds.


Pediatric Research | 1998

Arginine-metabolizing enzymes in the developing rat small intestine.

W. J. de Jonge; Maria A. Dingemanse; P. A. J. De Boer; W. H. Lamers; A. F. M. Moorman

Before weaning, arginine biosynthesis from citrulline most likely takes place in the small intestine rather than in the kidney. We studied the expression of ornithine cycle enzymes in the rat small intestine during perinatal development. The spatiotemporal patterns of expression of ornithine aminotransferase, carbamoylphosphate synthetase, ornithine transcarbamoylase, argininosuccinate synthetase, argininosuccinate lyase, and arginase mRNAs were studied by Northern blot analysis and in situ hybridization. In addition, the expression of carbamoylphosphate synthetase and argininosuccinate synthetase protein was studied by immunohistochemistry. Before birth, the developmentally more mature proximal loops of the intestine expressed the mRNAs at higher concentrations than the more distal loops. After birth, this difference was no longer obvious. The mRNAs of argininosuccinate synthetase and argininosuccinate lyase, the enzymes that metabolize citrulline to arginine, were detectable only in the upper part of the villi, whereas the other mRNAs were concentrated in the crypts. The distribution of argininosuccinate synthetase protein corresponded with that of the mRNA, whereas carbamoylphosphate synthetase protein was present in all enterocytes of the crypts and villi. Hepatic arginase mRNA could not be detected in the enterocytes. The spatial distribution of the respective mRNAs and proteins along the villus axis of the suckling small intestine indicates that the basal enterocytes synthesize citrulline, whereas the enterocytes in the upper half of the villus synthesize arginine.


Histochemical Journal | 1990

Expression patterns of mRNAs for ammonia-metabolizing enzymes in the developing rat: the ontogenesis of hepatocyte heterogeneity

A. F. M. Moorman; P. A. J. De Boer; A. T. Das; W. T. Labruyere; R. Charles; W. H. Lamers

SummaryThe expression patterns of the mRNAs for the ammonia-metabolizing enzymes carbamoylphosphate synthetase (CPS), glutamine synthetase (GS) and glutamate dehydrogenase (GDH) were studied in developing pre- and neonatal rat liver byin situ hybridization.In the period of 11 to 14 embryonic days (ED) the concentrations of GS and GDH mRNA increases rapidly in the liver, whereas a substantial rise of CPS mRNA in the liver does not occur until ED 18. Hepatocyte heterogeneity related to the vascular architecture can first be observed at ED 18 for GS mRNA, at ED 20 for GDH mRNA and three days after birth for CPS mRNA. The adult phenotype is gradually established during the second neonatal week, i.e. GS mRNA becomes confined to a pericentral compartment of one to two hepatocytes thickness, CPS mRNA to a large periportal compartment being no longer expressed in the pericentral compartment and GDH mRNA is expressed over the entire porto-central distance, decreasing in concentration going from central to portal. Comparison of the observed mRNA distribution patterns in the perinatal liver, with published data on the distribution of the respective proteins, points to the occurrence of posttranslational, in addition to pretranslational control mechanisms in the period of ontogenesis of hepatocyte heterogeneity.Interestingly, during development all three mRNAS are expressed outside the liver to a considerable extent and in a highly specific way, indicating that several organs are involved in the developmentally regulated expression of the mRNAs for the ammonia-metabolizing enzymes, that were hitherto not recognized as such.

Collaboration


Dive into the W. H. Lamers's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Charles

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ard Jonker

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Zonneveld

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Clevers

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge