W. Heil
University of Mainz
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Heil.
The Lancet | 1996
Michael Ebert; Tino Grossmann; W. Heil; E. W. Otten; Reinhard Surkau; Manfred Thelen; M. Leduc; Peter Bachert; Michael V. Knopp; Lothar R. Schad
BACKGROUND Magnetic resonance imaging (MRI) relies on magnetisation of hydrogen nuclei (protons) of water molecules in tissue as source of the signal. This technique has been valuable for studying tissues that contain significant amounts of water, but biological settings with low proton content, notably the lungs, are difficult to image. We report use of spin-polarised helium-3 for lung MRI. METHODS A volunteer inhaled hyperpolarised 3He to fill the lungs, which were imaged with a conventional MRI detector assembly. The nuclear spin polarisation of helium, and other noble gases, can be greatly enhanced by laser optical pumping and is about 10(5) times larger than the polarisation of water protons. This enormous gain in polarisation easily overcomes the loss in signal due to the lower density of the gas. FINDINGS The in-vivo experiment was done in a whole-body MRI scanner. The 3He image showed clear demarcation of the lung against diaphragm, heart, chest wall, and blood vessels (which gave no signal). The signal intensity within the air spaces was greatest in lung regions that are preferentially ventilated in the supine position; less well ventilated areas, such as the apices, showed a weaker signal. INTERPRETATION MRI with hyperpolarised 3He gas could be an alternative to established nuclear medicine methods. The ability to image air spaces offers the possibility of investigating physiological and pathophysiological processes in pulmonary ventilation and differences in its regional distribution.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1997
Reinhard Surkau; J. Becker; Michael Ebert; T. Grossmann; W. Heil; D. Hofmann; H. Humblot; M. Leduc; E. W. Otten; D. Rohe; K Siemensmeyer; M Steiner; F Tasset; N. Trautmann
The strongly spin dependent absorption of neutrons in nuclear spin polarized 3He opens the possibility to polarize beams of thermal and epithermal neutrons. An effective 3He neutron spin filter (NSF) requires high 3He nuclear polarization as well as a filter thickness corresponding to a gas amount of the order of 1 barl. We realized such a filter using direct optical pumping of metastable 3He∗ atoms in a 3He plasma at 1 mbar. Metastable exchange scattering transfers the angular momentum to the whole ensemble of 3He atoms. At present 3 × 1018 3He-atoms/s are polarized up to 64%. Subsequent polarization preserving compression by a two stage compressor system enables to prepare NSF cells of about 300 cm3 volume with 3 bar of polarized 3He within 2 h. 3He polarizations up to 53% were measured in a cell with a filter length of about 15 cm. By this cell a thermal neutron beam from the Mainz TRIGA reactor was polarized. A wavelength selective polarization analysis by means of Bragg scattering revealed a neutron polarization of 84% at a total transmission of 12% for a neutron wavelength of 1 A.
Physics Letters A | 1995
W. Heil; Hubert Humblot; E. W. Otten; Matthias Schafer; Reinhard Sarkau; M. Leduc
Abstract We obtained very long relaxation times T 1 of up to 120 h for the nuclear polarization of an optically pumped helium 3 gas. The glass containers were internally coated with metallic films such as bismuth or cesium. These findings will have applications in the field of helium magnetometers and polarized targets.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1994
J. Becker; W. Heil; B. Krug; M. Leduc; M. Meyerhoff; P.J. Nacher; E. W. Otten; Th. Prokscha; L.D. Schearer; R. Surkau
Abstract We have piloted mechanical compression of spinpolarized 3 He by a titanium piston compressor. Questions of materials and design are discussed, followed by a thorough investigation of relaxation sources in the course of compression. The latter are traced mainly to regions with large surface to volume ratio, through which fast passage is demanded, therefore. We conclude from this feasibility study that polarized 3 He may be compressed this way up to many bars without serious polarization losses.
NMR in Biomedicine | 2000
Anselm Deninger; Balthasar Eberle; Michael Ebert; Tino Grossmann; Gorden Hanisch; W. Heil; Hans-Ulrich Kauczor; Klaus Markstaller; E. W. Otten; Wolfgang G. Schreiber; Reinhard Surkau; Norbert Weiler
We applied a recently developed method of following the time course of the intrapulmonary oxygen partial pressure pO2(t) during apnea by 3He MRI to healthy volunteers. Using two imaging series with different interscan times during two breathholds (double acquisition technique), relaxation of 3He due to paramagnetic oxygen and depolarization by RF pulses were discriminated. In all four subjects, the temporal evolution of pO2 was found to be linear, and was described by an initial partial pressure p0 and a decrease rate R. Also, regional differences of both p0 and R were observed. A correlation between p0 and R was apparent. Finally, we discuss limitations of the double acquisition approach. Copyright
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 1992
G. Eckert; W. Heil; M. Meyerhoff; E. W. Otten; R. Surkau; M. Werner; M. Leduc; P.J. Nacher; L.D. Schearer
Abstract 3 He-gas is spin polarized by the method of optical pumping of metastables and metastability exchange in a low pressure gas discharge. At a pressure of p ≈ 1.5 Torr a volume of 1 l is polarized within about 30 s to a degree of 50% with 300 mW of incident light from an argon-ion laser pumped LNA laser, tuned to the λ = 1.083 μm resonance line. The polarized gas is compressed by a Toepler pump into a target cell of 120 cm 3 volume. In a first attempt a steady state polarization of 30% has been achieved in the target at a pressure of 685 Torr. The paper analyses the essential parameters governing this technique and pilotes its experimental realization.
Nuclear Physics | 1989
W. Heil; J. Ahrens; H.G. Andresen; A. Bornheimer; D. Conrath; K.-J. Dietz; W. Gasteyer; H.-J. Gessinger; W. Hartmann; J. Jethwa; H.-J. Kluge; H. Kessler; T. Kettner; L. Koch; F. Neugebauer; R. Neuhausen; E. W. Otten; E. Reichert; F.P. Schäfer; B. Wagner
Abstract In scattering polarized electrons (P1 = 44% by 9Be at an energy of 300 MeV at angles 115°⩽ϑ⩽145° a parity violating asymmetry of Acorr = (−3.5 ± 0.7 ± 0.2) × 10−6 was measured. After correction for finite electron polarization and background we deduce an experimental asymmetry of Acx = (−9.4 ± 1.8 ± 0.5) × 10−6. The quoted errors indicate the statistical and the systematic uncertainties, respectively. The asymmetry, which is dominated by the quasielastic cross section, is interpreted in terms of model-independent electron-nucleon coupling constants of the weak neutral current. The error limits in the sector of axial vector coupling constants have been improved by a factor of 3 over previous results. A model-dependent analysis for the Weinberg angle yields the result sin2θw = 0.221 ± 0.014 ± 0.004.
Physics Letters B | 2003
J. Bermuth; P. Merle; C. Carasco; D. Baumann; R. Böhm; D. Bosnar; M. Ding; M. O. Distler; J. Friedrich; J. Golak; W. Glöckle; M. Hauger; W. Heil; P. Jennewein; J. Jourdan; H. Kamada; A. Klein; M. Kohl; B. Krusche; K. W. Krygier; H. Merkel; U. Müller; R. Neuhausen; A. Nogga; Ch. Normand; E. W. Otten; Th. Pospischil; M. Potokar; D. Rohe; H. Schmieden
The charge form factor of the neutron has been determined from asymmetries measured in quasi-elastic 3 (He) over right arrow((e) over right arrow, e`n) at a momentum transfer of 0.67 (GeV/c)(2). In addition, the target analyzing power, A(y)(0), has been measured to study effects of final state interactions and meson exchange currents.
Physical Review Letters | 2014
F. Allmendinger; W. Heil; S. Karpuk; Wolfgang Kilian; A. Scharth; U. Schmidt; A. Schnabel; Yu. Sobolev; K. Tullney
We report on the search for a CPT- and Lorentz-invariance-violating coupling of the He3 and Xe129 nuclear spins (each largely determined by a valence neutron) to posited background tensor fields that permeate the Universe. Our experimental approach is to measure the free precession of nuclear spin polarized He3 and Xe129 atoms in a homogeneous magnetic guiding field of about 400 nT using LTC SQUIDs as low-noise magnetic flux detectors. As the laboratory reference frame rotates with respect to distant stars, we look for a sidereal modulation of the Larmor frequencies of the colocated spin samples. As a result we obtain an upper limit on the equatorial component of the background field interacting with the spin of the bound neutron b(⊥)(n)<8.4 × 10(-34) GeV (68% C.L.). Our result improves our previous limit (data measured in 2009) by a factor of 30 and the worlds best limit by a factor of 4.
Physical Review Letters | 2013
K. Tullney; F. Allmendinger; Martin Burghoff; W. Heil; S. Karpuk; Wolfgang Kilian; S. Knappe-Grüneberg; Wolfgang Müller; U. Schmidt; A. Schnabel; F. Seifert; Yuri Sobolev; Lutz Trahms
We search for a spin-dependent P- and T-violating nucleon-nucleon interaction mediated by light pseudoscalar bosons such as axions or axionlike particles. We employ an ultrasensitive low-field magnetometer based on the detection of free precession of colocated 3He and 129Xe nuclear spins using SQUIDs as low-noise magnetic flux detectors. The precession frequency shift in the presence of an unpolarized mass was measured to determine the coupling of pseudoscalar particles to the spin of the bound neutron. For boson masses between 2 and 500 μeV (force ranges between 3×1(-4) m and 10(-1) m) we improved the laboratory upper bounds by up to 4 orders of magnitude.