W. Lefebvre
University of Rouen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. Lefebvre.
Journal of Applied Physics | 2009
H. S. Hasting; Anders G. Frøseth; Sigmund J. Andersen; René Vissers; John C. Walmsley; Calin Daniel Marioara; F. Danoix; W. Lefebvre; Randi Holmestad
The composition of β″ precipitates in an Al–Mg–Si alloy has been investigated by atom probe tomography, ab initio density functional calculations, and quantitative electron diffraction. Atom probe analysis of an Al-0.72% Si-0.58% Mg (at. %) alloy heat treated at 175 °C for 36 h shows that the β″ phase contains ∼20 at. % Al and has a Mg/Si-ratio of 1.1, after correcting for a local magnification effect and for the influence of uneven evaporation rates. The composition difference is explained by an exchange of some Si with Al relative to the published β″-Mg5Si6 structure. Ab initio calculations show that replacing the Si3-site by aluminum leads to energetically favorable compositions consistent with the other phases in the precipitation sequence. Quantitative electron nanodiffraction is relatively insensitive to this substitution of Al by Si in the β″-phase.
Philosophical Magazine Letters | 2006
F. De Geuser; W. Lefebvre; D. Blavette
The pair-correlation function applied to 3D Atom Probe reconstructed volumes has been used to study the influence of a pre-ageing treatment (363 K) on the early stages of precipitation at 458 K in an Al-Mg-Si 6016 alloy. Mg-Si short-range positive pair correlation (clustering) is shown to form after a pre-ageing treatment. The hetero-atomic clusters are thought to act as preferential nucleation sites and lead to a finer dispersion of precipitates after ageing.
Surface and Interface Analysis | 2007
F. De Geuser; W. Lefebvre; F. Danoix; F. Vurpillot; B. Forbord; D. Blavette
A new 3DAP reconstruction procedure is proposed that accounts for the evaporation field of a secondary phase. It applies the existing cluster selection software to identify the atoms of the second phase and, subsequently, an iterative algorithm to homogenise the volume laterally. This procedure, easily implementable on existing reconstruction software, has been applied successfully on simulated and real 3DAP analyses.
Ultramicroscopy | 2009
T. Philippe; F. De Geuser; S. Duguay; W. Lefebvre; O. Cojocaru-Mirédin; G. Da Costa; D. Blavette
The measurement of chemical composition of tiny clusters is a tricky problem in both atom-probe tomography experiments and atomic simulations. A new approach relying on the distribution of the first nearest neighbour (1NN) distances between solute atoms in the 3D space composed of A and B atoms was developed. This new approach, the 1NN method, is shown to be an elegant way to get the composition of tiny B-enriched clusters embedded in a random AB solid solution. The theoretical statistical distributions of first neighbour distances P(r) for both random solid solution and solute-enriched clusters finely dispersed in a depleted matrix are established. It is shown that the most probable distance of P(r) gives directly the phase composition. Applications of this model to both one-phase SiGe alloy and boron-doped silicon containing small clusters indicate that this new approach is quite reliable.
Journal of Applied Physics | 2010
Malin Torsæter; H. S. Hasting; W. Lefebvre; Calin Daniel Marioara; John C. Walmsley; Sigmund J. Andersen; Randi Holmestad
This work provides a detailed atom probe tomography study of clustering in the Al–Mg–Si system. Focus is on separating and understanding the influence of natural aging, preaging, and alloy composition on the clustering behavior of solute atoms. Two dilute alloys with the same total solute content have been studied, one Mg-rich and one Si-rich. The detrimental effect of natural aging for these alloys is investigated by comparing directly preaged samples to samples stored at room temperature before the preaging treatment. Clusters were identified in the atom probe datasets by the maximum separation method employing heuristically determined input parameters. It was found that seven days of intermediate natural aging gave a five times lower number density of clusters as compared to direct preaging for both alloy types. The clusters were of comparable size but their compositions depended on heat treatment history. Preaging promoted the formation of clusters with an Mg:Si ratio close to 1 in both alloys, while ...
Philosophical Magazine | 2007
Takeshi Saito; Sigurd Wenner; Elisa Osmundsen; Calin Daniel Marioara; Sigmund J. Andersen; Jostein Røyset; W. Lefebvre; Randi Holmestad
Effects of addition of Zn (up to 1 wt%) on microstructure, precipitate structure and intergranular corrosion (IGC) in an Al–Mg–Si alloys were investigated. During ageing at 185 °C, the alloys showed modest increases in hardness as function of Zn content, corresponding to increased number densities of needle-shaped precipitates in the Al–Mg–Si alloy system. No precipitates of the Al–Zn–Mg alloy system were found. Using high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), the Zn atoms were incorporated in the precipitate structures at different atomic sites with various atomic column occupancies. Zn atoms segregated along grain boundaries, forming continuous film. It correlates to high IGC susceptibility when Zn concentration is ~1wt% and the materials in peak-aged condition.
Nano Letters | 2014
L. Rigutti; Ivan Blum; Deodatta Shinde; D Hernandez-Maldonado; W. Lefebvre; J. Houard; F. Vurpillot; A. Vella; M. Tchernycheva; Christophe Durand; J. Eymery; B. Deconihout
A single nanoscale object containing a set of InGaN/GaN nonpolar multiple-quantum wells has been analyzed by microphotoluminescence spectroscopy (μPL), high-resolution scanning transmission electron microscopy (HR-STEM) and atom probe tomography (APT). The correlated measurements constitute a rich and coherent set of data supporting the interpretation that the observed μPL narrow emission lines, polarized perpendicularly to the crystal c-axis and with energies in the interval 2.9-3.3 eV, are related to exciton states localized in potential minima induced by the irregular 3D In distribution within the quantum well (QW) planes. This novel method opens up interesting perspectives, as it will be possible to apply it on a wide class of quantum confining emitters and nano-objects.
Microscopy Research and Technique | 2011
F. De Geuser; W. Lefebvre
In this study, we propose a fast automatic method providing the matrix concentration in an atom probe tomography (APT) data set containing two phases or more. The principle of this method relies on the calculation of the relative amount of isolated solute atoms (i.e., not surrounded by a similar solute atom) as a function of a distance d in the APT reconstruction. Simulated data sets have been generated to test the robustness of this new tool and demonstrate that rapid and reproducible results can be obtained without the need of any user input parameter. The method has then been successfully applied to a ternary Al‐Zn‐Mg alloy containing a fine dispersion of hardening precipitates. The relevance of this method for direct estimation of matrix concentration is discussed and compared with the existing methodologies. Microsc. Res. Tech., 2010.
Philosophical Magazine | 2014
Takeshi Saito; Calin Daniel Marioara; Sigmund J. Andersen; W. Lefebvre; Randi Holmestad
Precipitates in a lean Al–Mg–Si alloy with low Cu addition (~0.10 wt.%) were investigated by aberration-corrected high angle annular dark field scanning transmission electron microscopy (HAADF-STEM). Most precipitates were found to be disordered on the generally ordered network of Si atomic columns which is common for the metastable precipitate structures. Fragments of known metastable precipitates in the Al–Mg–Si–(Cu) alloy system are found in the disordered precipitates. It was revealed that the disordered precipitates arise as a consequence of coexistence of the Si-network. Cu atomic columns are observed to either in-between the Si-network or replacing a Si-network column. In both cases, Cu is the center in a three-fold rotational symmetry on the Si-network. Parts of unit cells of Q′ phase were observed in the ends of a string-type precipitates known to extend along dislocation lines. It is suggested that the string-types form by a growth as extension of the B′/Q′ precipitates initially nucleated along dislocation lines. Alternating Mg and Si columns form a well-ordered interface structure in the disordered Q′ precipitate. It is identical to the interface of the Q′ parts in the string-type precipitate.
Journal of Materials Science | 2013
Calin Daniel Marioara; W. Lefebvre; Sigmund J. Andersen; Jesper Friis
The structures of two nanoscale plate precipitates prevalent at maximum strength and over-aged conditions in a 7449 Al–Mg–Zn–Cu alloy were investigated. Models derived from images of high angle annular dark field scanning transmission electron microscopy were supported by first-principles calculations. Both structures are closely linked to the η-MgZn2 Laves phase through similar layers of a rhombohedral atomic subunit. The finest plate contains one such layer together with a layer of an orthorhombic unit. The second plate contains rhombohedral layers only, normally four, but rotated relatively to form different stacking variants, one of which may be likened to η. For both structures, the same atomic planes describe the main interface with Al. Both plates could be described in space group P3. The unit cells comprise interface and arbitrary numbers of {111}Al (habit) planes. Eight Al-planes were included in the first-principles calculations. The enthalpy indicates high layer/unit stability. The plate thickness can be understood by a simple mismatch formulation.