Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. M. Lai is active.

Publication


Featured researches published by W. M. Lai.


Journal of Biomechanics | 1989

Biphasic indentation of articular cartilage-II. A numerical algorithm and an experimental study

Van C. Mow; M.C. Gibbs; W. M. Lai; Wenbo Zhu; Kyriacos A. Athanasiou

Part I (Mak et al., 1987, J. Biomechanics 20, 703-714) presented the theoretical solutions for the biphasic indentation of articular cartilage under creep and stress-relaxation conditions. In this study, using the creep solution, we developed an efficient numerical algorithm to compute all three material coefficients of cartilage in situ on the joint surface from the indentation creep experiment. With this method we determined the average values of the aggregate modulus. Poissons ratio and permeability for young bovine femoral condylar cartilage in situ to be HA = 0.90 MPa, vs = 0.39 and k = 0.44 x 10(-15) m4/Ns respectively, and those for patellar groove cartilage to be HA = 0.47 MPa, vs = 0.24, k = 1.42 x 10(-15) m4/Ns. One surprising finding from this study is that the in situ Poissons ratio of cartilage (0.13-0.45) may be much less than those determined from measurements performed on excised osteochondral plugs (0.40-0.49) reported in the literature. We also found the permeability of patellar groove cartilage to be several times higher than femoral condyle cartilage. These findings may have important implications on understanding the functional behavior of cartilage in situ and on methods used to determine the elastic moduli of cartilage using the indentation experiments.


Journal of Biomechanics | 1987

Biphasic indentation of articular cartilage—I. Theoretical analysis

A.F. Mak; W. M. Lai; Van C. Mow

A mathematical solution has been obtained for the indentation creep and stress-relaxation behavior of articular cartilage where the tissue is modeled as a layer of linear KLM biphasic material of thickness h bonded to an impervious, rigid bony substrate. The circular (radius = a), plane-ended indenter is assumed to be rigid, porous, free-draining, and frictionless. Double Laplace and Hankel transform techniques were used to solve the partial differential equations. The transformed equations and boundary conditions yielded an integral equation of the Fredholm type which was analyzed asymptotically and solved numerically. Our asymptotic analyses showed that the linear KLM biphasic material behaves like an incompressible (v = 0.5) single-phase elastic solid at t = 0+; the instantaneous response of the material is governed by the shear modulus (mu s) of the solid matrix. The linear KLM biphasic material behaves like a compressible elastic solid with material properties defined by those of the solid matrix, i.e. (lambda s, mu s) or (mu s, v s) as t----infinity. The transient viscoelastic creep and stress-relaxation behavior, 0 less than t less than infinity, of this material is controlled by the frictional drag (which is inversely proportional to the permeability k) associated with the flow of the interstitial fluid through the porous-permeable solid matrix. For given values of the Poissons ratio of the solid matrix v s and the aspect ratio a/h, where a is the radius of the indenter and h is the thickness of the layer, the creep behavior with respect to the dimensionless time H Akt/a2 is completely controlled by the load parameter P/2 mu sa2 and the stress relaxation behavior is completely controlled by the rate of compression parameter R0 = kH A/V0h where H A = lambda s + 2 mu s and the equilibrium strain u0/h. This mathematical solution may now be used to describe an indentation experiment on articular cartilage to determine the intrinsic material properties of the tissue, i.e. permeability k, and the elastic coefficients of the solid phase (lambda s, mu s) or (mu s, v s).


Journal of Biomechanics | 1994

An asymptotic solution for the contact of two biphasic cartilage layers

Gerard A. Ateshian; W. M. Lai; W.B. Zhu; Van C. Mow

The purpose of this study was to present a solution for the contact of two biphasic cartilage layers which can be used for dynamic loading, is not restricted to predictions over small time periods, and predicts biologically meaningful changes in contact areas over time. The proposed solution was based on the work of Ateshian et al. (1994, J. Biomechanics 27, 1347-1360) who retained the first term of an asymptotic expansion and used an approximate integration which is valid for short time periods. The solution proposed here uses an exact integration, is valid over long time periods, and can be used for increasing loading. The new solution corrects a limitation of the work by Ateshian et al., which manifests itself immediately (i.e. at time t = 0+ s): the rate of change in the contact radius (and therefore, the contact area) is increasing in Ateshian et al.s solution for a constant force, whereas it is decreasing in the new solution. An increasing rate of change in the contact radius suggests that the contact radius (area) is unbounded, and a steady-state solution cannot be reached, which is physically not correct for the contact of two joint surfaces. In the new solution, the contact radius reaches a steady-state value given sufficient time.


Journal of Biomechanical Engineering-transactions of The Asme | 1998

A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-electrolytes: Passive Transport and Swelling Behaviors

Wei Yong Gu; W. M. Lai; Van C. Mow

A new mixture theory was developed to model the mechano-electrochemical behaviors of charged-hydrated soft tissues containing multi-electrolytes. The mixture is composed of n + 2 constituents (1 charged solid phase, 1 noncharged solvent phase, and n ion species). Results from this theory show that three types of force are involved in the transport of ions and solvent through such materials: (1) a mechanochemical force (including hydraulic and osmotic pressures); (2) an electrochemical force; and (3) an electrical force. Our results also show that three types of material coefficients are required to characterize the transport rates of these ions and solvent: (1) a hydraulic permeability; (2) mechano-electrochemical coupling coefficients; and (3) an ionic conductance matrix. Specifically, we derived the fundamental governing relationships between these forces and material coefficients to describe such mechano-electrochemical transduction effects as streaming potential, streaming current, diffusion (membrane) potential, electro-osmosis, and anomalous (negative) osmosis. As an example, we showed that the well-known formula for the resting cell membrane potential (Hodgkin and Huxley, 1952a, b) could be derived using our new n + 2 mixture model (a generalized triphasic theory). In general, the n + 2 mixture theory is consistent with and subsumes all previous theories pertaining to specific aspects of charged-hydrated tissues. In addition, our results provided the stress, strain, and fluid velocity fields within a tissue of finite thickness during a one-dimensional steady diffusion process. Numerical results were provided for the exchange of Na+ and Ca++ through the tissue. These numerical results support our hypothesis that tissue fixed charge density (CF) plays a significant role in modulating kinetics of ions and solvent transport through charged-hydrated soft tissues.


International Journal for Numerical Methods in Engineering | 1999

A mixed finite element formulation of triphasic mechano‐electrochemical theory for charged, hydrated biological soft tissues

D. N. Sun; Wei Yong Gu; X.E. Guo; W. M. Lai; Van C. Mow

An equivalent new expression of the triphasic mechano-electrochemical theory [9] is presented and a mixed finite element formulation is developed using the standard Galerkin weighted residual method. Solid displacement us, modified electrochemical/chemical potentials ϵw, ϵ+and ϵ− (with dimensions of concentration) for water, cation and anion are chosen as the four primary degrees of freedom (DOFs) and are independently interpolated. The modified Newton–Raphson iterative procedure is employed to handle the non-linear terms. The resulting first-order Ordinary Differential Equations (ODEs) with respect to time are solved using the implicit Euler backward scheme which is unconditionally stable. One-dimensional (1-D) linear isoparametric element is developed. The final algebraic equations form a non-symmetric but sparse matrix system. With the current choice of primary DOFs, the formulation has the advantage of small amount of storage, and the jump conditions between elements and across the interface boundary are satisfied automatically. The finite element formulation has been used to investigate a 1-D triphasic stress relaxation problem in the confined compression configuration and a 1-D triphasic free swelling problem. The formulation accuracy and convergence for 1-D cases are examined with independent finite difference methods. The FEM results are in excellent agreement with those obtained from the other methods. Copyright


Journal of Tribology-transactions of The Asme | 1998

The Role of Interstitial Fluid Pressurization and Surface Porosities on the Boundary Friction of Articular Cartilage

Gerard A. Ateshian; Huiqun Wang; W. M. Lai

Articular cartilage is the remarkable bearing material of diarthrodial joints. Experimental measurements of its friction coefficient under various configurations have demonstrated that it is load-dependent, velocity-dependent, and time-dependent, and it can vary from values as low as 0.002 to as high as 0.3 or greater. Yet, many studies have suggested that these frictional properties are not dependent upon the viscosity of synovial fluid. In this paper, a theoretical formulation of a boundary friction modelfor articular cartilage is described and verified directly against experimental results in the configuration of confined compression stress-relaxation. The mathematical formulation of the friction model can potentially explain many of the experimentally observed frictional responses in relation to the pressurization of the interstitial fluid inside cartilage during joint loading, and the equilibrium friction coefficient which prevails in the absence of such pressurization. In this proposed model, it is also hypothesized that surface porosities play a role in the regulation of the frictional response of cartilage. The good agreement between theoretical predictions and experimental results of this study provide support for the proposed boundary friction formulation.


Journal of Biomechanics | 1993

Transport of fluid and ions through a porous-permeable charged-hydrated tissue, and streaming potential data on normal bovine articular cartilage

Wei Yong Gu; W. M. Lai; Van C. Mow

Using the triphasic mechano-electrochemical theory [Lai et al., J. biomech. Engng 113, 245-258 (1991)], we analyzed the transport of water and ions through a finite-thickness layer of charged, hydrated soft tissue (e.g. articular cartilage) in a one-dimensional steady permeation experiment. For this problem, we obtained numerically the concentrations of the ions, the strain field and the fluid and ion velocities inside when the specimen is subject to an applied mechanical pressure and/or osmotic pressure across the layer. The relationships giving the dependence of streaming potential and permeability on the negative fixed charge density (FCD) of the tissue were derived analytically for the linear case, and calculated for the nonlinear case. Among the results obtained were: (1) at a fluid pressure difference of 0.1 MPa across the specimen layer, there is a 10% flow-induced compaction at the downstream boundary; (2) the flow-induced compaction causes the FCD to increase and the neutral salt concentration to decrease in the downstream direction; (3) while both ions move downstream, relative to the solvent (water), the anions (Cl-) move with the flow whereas cations (Na+) move against the flow. The difference in ion velocities depends on the FCD, and this difference attained a maximum at a physiological FCD of around 0.2 meq ml-1; (4) the apparent permeability decreases nonlinearly with FCD, and the apparent stiffness of the tissue increases with FCD; and (5) the streaming potential is not a monotonic function of the FCD but rather it has a maximum value within the physiological range of FCD for articular cartilage. Finally, experimental data on streaming potential were obtained from bovine femoral cartilage. These data support the triphasic theoretical prediction of non-monotonicity of streaming potential as a function of the FCD.


Journal of Biomechanics | 1992

An analysis of the squeeze-film lubrication mechanism for articular cartilage

J. S. Hou; Van C. Mow; W. M. Lai; Mark H. Holmes

An asymptotic analysis of a lubrication problem is presented for a model of articular cartilage and synovial fluid under the squeeze-film condition. This model is based upon the following constitutive assumptions: (1) articular cartilage is a linear porous-permeable biphasic material filled with a linearly viscous fluid (i.e. Newtonian fluid); (2) synovial fluid is also a linearly viscous fluid. The geometry of the problem is defined by assuming that (1) cartilage is a uniform layer of thickness H; (2) synovial fluid is a very thin layer compared to H; (3) the radius R of the load-supporting area (or the effective radius of curvature of joint surface, Ri) is large compared to H. Squeeze-film action is generated in the lubricant by a step loading function applied onto the two bearing surfaces. The model assumptions and the material properties yield two small parameters in the mathematical formulation. Based on these two small parameters, two coupled nonlinear partial differential equations were derived from an asymptotic analysis of the problem: one for the lubricant (analogous to the Reynolds equation) and one for the cartilage. For known properties of normal cartilage, our calculations show: (1) the cartilage layer deforms to enlarge the load-supporting area; (2) cartilage deformation acts to reduce the lateral fluid speed in the lubricant, thus prolonging the squeeze-film time which ranges from 1 to 10 s; (3) lubricant fluid in the gap is forced from the central high-pressure region into cartilage, and expelled from the tissue at the low-pressure periphery of the load-bearing region; and (4) tensile hoop stress exists at the cartilage surface despite the compressive squeeze-film loading condition. This hoop stress results directly from the radial flow of the interstitial fluid in the cartilage layer.


Transport in Porous Media | 1999

Transport of Multi-Electrolytes in Charged Hydrated Biological Soft Tissues

Wei Yong Gu; W. M. Lai; Van C. Mow

A mechano-electrochemical theory for charged hydrated soft tissues with multi-electrolytes was developed based on the continuum mixture theory. The momentum equations for water and ions were derived in terms of a mechanochemical force (gradient of water chemical potential), electrochemical forces (gradient of Nernst potentials) and an electrical force (gradient of electrical potential). The theory was shown to be consistent with all existing specialized theories. Using this theory, some mechano-electrokinetic properties of charged isotropic tissues were studied. The well-known Hodgkin–Huxley equation for resting cell membrane potential was derived and the phenomenon of electro-osmotic flow in charged hydrated soft tissues was investigated. Analyses show that the tissue fixed charge density plays an important role in controlling the transport of water and ions in charged hydrated soft tissues.


Journal of Biomechanical Engineering-transactions of The Asme | 2004

The Influence of the Fixed Negative Charges on Mechanical and Electrical Behaviors of Articular Cartilage Under Unconfined Compression

Daniel D. Sun; X. E. Guo; Morakot Likhitpanichkul; W. M. Lai; Van C. Mow

Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Youngs modulus and the apparent Poissons ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Youngs modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Youngs modulus of an uncharged tissue. 3) The apparent Poissons ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poissons ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%-22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.

Collaboration


Dive into the W. M. Lai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.F. Mak

Rensselaer Polytechnic Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge