Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. M. Snelling is active.

Publication


Featured researches published by W. M. Snelling.


Journal of Animal Science | 2010

Genome-wide association study of growth in crossbred beef cattle

W. M. Snelling; M. F. Allan; J. W. Keele; L. A. Kuehn; T. G. McDaneld; T. P. L. Smith; Tad S. Sonstegard; R. M. Thallman; G. L. Bennett

Chromosomal regions harboring variation affecting cattle birth weight and BW gain to 1 yr of age were identified by marker association using the highly parallel BovineSNP50 BeadChip (50K) assay composed of 54,001 individual SNP. Genotypes were obtained from progeny (F(1); 590 steers) and 2-, 3-, and 4-breed cross grandprogeny (F(1)(2) = F(1) x F(1); 1,306 steers and 707 females) of 150 AI sires representing 7 breeds (22 sires per breed; Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental). Genotypes and birth, weaning, and yearling BW records were used in whole-genome association analyses to estimate effects of individual SNP on growth. Traits analyzed included growth component traits: birth weight (BWT), 205-d adjusted birth to weaning BW gain (WG), 160-d adjusted postweaning BW gain (PWG); cumulative traits: 205-d adjusted weaning weight (WW = BWT + WG) and 365-d adjusted yearling weight (YW = BWT + WG + PWG); and indexes of relative differences between postnatal growth and birth weight. Modeled fixed effects included additive effects of calf and dam SNP genotype, year-sex-management contemporary groups, and covariates for calf and dam breed composition and heterosis. Direct and maternal additive polygenic effects and maternal permanent environment effects were random. Missing genotypes, including 50K genotypes of most dams, were approximated with a single-locus BLUP procedure from pedigree relationships and known 50K genotypes. Various association criteria were applied: stringent tests to account for multiple testing but with limited power to detect associations with small effects, and relaxed nominal P that may detect SNP associated with small effects but include excessive false positive associations. Genomic locations of the 231 SNP meeting stringent criteria generally coincided with described previously QTL affecting growth traits. The 12,425 SNP satisfying relaxed tests were located throughout the genome. Most SNP associated with BWT and postnatal growth affected components in the same direction, although detection of SNP associated with one component independent of others presents a possible opportunity for SNP-assisted selection to increase postnatal growth relative to BWT.


Mammalian Genome | 2003

Prion gene sequence variation within diverse groups of U.S. sheep, beef cattle, and deer

Michael P. Heaton; K. A. Leymaster; Brad A. Freking; Deedra A. Hawk; T. P. L. Smith; J. W. Keele; W. M. Snelling; James M. Fox; Carol G. Chitko-McKown; William W. Laegreid

Prions are proteins that play a central role in transmissible spongiform encephalopathies in a variety of mammals. Among the most notable prion disorders in ungulates are scrapie in sheep, bovine spongiform encephalopathy in cattle, and chronic wasting disease in deer. Single nucleotide polymorphisms in the sheep prion gene (PRNP) have been correlated with susceptibility to natural scrapie in some populations. Similar correlations have not been reported in cattle or deer; however, characterization of PRNP nucleotide diversity in those species is incomplete. This report describes nucleotide sequence variation and frequency estimates for the PRNP locus within diverse groups of U.S. sheep, U.S. beef cattle, and free-ranging deer (Odocoileusvirginianus and O. hemionus from Wyoming). DNA segments corresponding to the complete prion coding sequence and a 596-bp portion of the PRNP promoter region were amplified and sequenced from DNA panels with 90 sheep, 96 cattle, and 94 deer. Each panel was designed to contain the most diverse germplasm available from their respective populations to facilitate polymorphism detection. Sequence comparisons identified a total of 86 polymorphisms. Previously unreported polymorphisms were identified in sheep (9), cattle (13), and deer (32). The number of individuals sampled within each population was sufficient to detect more than 95% of all alleles present at a frequency greater than 0.02. The estimation of PRNP allele and genotype frequencies within these diverse groups of sheep, cattle, and deer provides a framework for designing accurate genotype assays for use in genetic epidemiology, allele management, and disease control.


Journal of Animal Science | 2004

Assessment of positional candidate genes myf5 and igf1 for growth on bovine chromosome 5 in commercial lines of Bos taurus.

C. Li; J. Basarab; W. M. Snelling; B. Benkel; B. Murdoch; C. Hansen; S. S. Moore

Quantitative trait loci for growth traits in beef cattle have been previously reported and fine-mapped in three chromosomal regions of 0 to 30 cM, 55 to 70 cM, and 70 to 80 cM of bovine chromosome 5. In this study, we further examined the association between gene-specific single nucleotide polymorphisms (SNP) of two positional candidate genes, bovine myogenic factor 5 (myf5) and insulin-like growth factor-1 (igf1), in the QTL regions and the birth weight (BWT), preweaning average daily gain (PWADG), and average daily gain on feed (ADGF) in commercial lines of Bos taurus. The QTL regions for the growth traits identified using a haplotype association analysis, which included the gene-specific SNP markers for both genes in this study, were in agreement with previous studies. The gene-specific SNP marker association analysis indicated that the SNP in myf5 had a significant additive effect on PWADG in the M1 line of Beefbooster Inc. (P < 0.10), and a significant additive effect (P < 0.05) and a significant dominance effect (P < 0.10) on ADGF in the M3 line of Beefbooster Inc. When the data from the two commercial lines were pooled, the SNP in myf5 showed a significant association with PWADG (P < 0.10) and with ADGF (P < 0.05). The association between the SNP and BWT, however, did not reach a significance level in the M1 line, the M3 line, or across the lines. For igf1, no significant association between the SNP and the growth traits was detected in either the M1 line or the M3 line, whereas there was only a significant dominance effect (P < 0.10) on BWT detected for the SNP in igfl when the data from the two commercial lines were pooled. These results suggest that myf5 is a strong candidate gene that influences PWADG and ADGF in beef cattle. The SNP of igf1 may not be a causative or close to the causative mutation that affects the three growth traits in the populations of beef cattle examined in this study. Other SNP of igf1 and myf5 or other genes in their respective chromosomal regions, however, should also be studied.


Journal of Animal Science | 2009

Evaluation of antral follicle count and ovarian morphology in crossbred beef cows: investigation of influence of stage of the estrous cycle, age, and birth weight.

R. A. Cushman; M. F. Allan; L. A. Kuehn; W. M. Snelling; Andrea S. Cupp; H. C. Freetly

Depletion of the ovarian reserve is associated with reproductive senescence in mammalian females, and there is a positive relationship between the size of the ovarian reserve and the number of antral follicles on the surface of the ovary. Therefore, we conducted a series of experiments to investigate the influence of stage of the estrous cycle, age, and birth weight on antral follicle counts (AFC) in beef cows and heifers. Pairs of ovaries were collected from crossbred beef cows at slaughter (n = 72) or at necropsy (n = 333; 0 to 11 yr of age); all visible antral follicles were counted, the ovaries were weighed, and stage of the estrous cycle was estimated based on ovarian morphology. There was no influence of estimated stage of the estrous cycle on AFC (P = 0.36). There was a small but positive effect of birth weight on AFC [AFC = -1.7 + 0.31(birth weight); P = 0.007, r(2) = 0.05]. When antral follicle counts were regressed on age, there was a quadratic effect of age such that AFC increased until 5 yr of age and decreased thereafter [AFC = 12.9 + 9.0(yr) - 0.86(yr(2)); P < 0.001, r(2) = 0.22]. In a third experiment, crossbred beef heifers (n = 406; 353 to 463 d of age) at 3 locations were subjected to ovarian ultrasonography on unknown day of the estrous cycle. Heifers were classified as low AFC (<15 follicle, n = 84) or high AFC (>24 follicles, n = 178). Whereas estimated stage of the estrous cycle did not influence AFC (P = 0.62), heifers classified as low AFC had smaller ovaries (P = 0.001), decreased birth weight (P = 0.003), and a decreased heifer pregnancy rate (P = 0.05) compared with heifers in the high AFC group. From these results, we conclude that AFC in beef cows and heifers is influenced by birth weight and age but not by stage of the estrous cycle. In beef cows, the number of antral follicles increases to 5 yr of age and then begins to decline. This may indicate that a decrease in fertility due to decline of the ovarian reserve may begin earlier than previously thought in beef cows.


BMC Genetics | 2011

Association, effects and validation of polymorphisms within the NCAPG - LCORL locus located on BTA6 with feed intake, gain, meat and carcass traits in beef cattle

A. K. Lindholm-Perry; Andrea K. Sexten; L. A. Kuehn; T. P. L. Smith; D. Andy King; S. D. Shackelford; T. L. Wheeler; C. L. Ferrell; T. G. Jenkins; W. M. Snelling; H. C. Freetly

BackgroundIn a previously reported genome-wide association study based on a high-density bovine SNP genotyping array, 8 SNP were nominally associated (P ≤ 0.003) with average daily gain (ADG) and 3 of these were also associated (P ≤ 0.002) with average daily feed intake (ADFI) in a population of crossbred beef cattle. The SNP were clustered in a 570 kb region around 38 Mb on the draft sequence of bovine chromosome 6 (BTA6), an interval containing several positional and functional candidate genes including the bovine LAP3, NCAPG, and LCORL genes. The goal of the present study was to develop and examine additional markers in this region to optimize the ability to distinguish favorable alleles, with potential to identify functional variation.ResultsAnimals from the original study were genotyped for 47 SNP within or near the gene boundaries of the three candidate genes. Sixteen markers in the NCAPG-LCORL locus displayed significant association with both ADFI and ADG even after stringent correction for multiple testing (P ≤ 005). These markers were evaluated for their effects on meat and carcass traits. The alleles associated with higher ADFI and ADG were also associated with higher hot carcass weight (HCW) and ribeye area (REA), and lower adjusted fat thickness (AFT). A reduced set of markers was genotyped on a separate, crossbred population including genetic contributions from 14 beef cattle breeds. Two of the markers located within the LCORL gene locus remained significant for ADG (P ≤ 0.04).ConclusionsSeveral markers within the NCAPG-LCORL locus were significantly associated with feed intake and body weight gain phenotypes. These markers were also associated with HCW, REA and AFT suggesting that they are involved with lean growth and reduced fat deposition. Additionally, the two markers significant for ADG in the validation population of animals may be more robust for the prediction of ADG and possibly the correlated trait ADFI, across multiple breeds and populations of cattle.


BMC Genomics | 2005

Linkage mapping bovine EST-based SNP

W. M. Snelling; E. Casas; R. T. Stone; J. W. Keele; Gregory P. Harhay; G. L. Bennett; T. P. L. Smith

BackgroundExisting linkage maps of the bovine genome primarily contain anonymous microsatellite markers. These maps have proved valuable for mapping quantitative trait loci (QTL) to broad regions of the genome, but more closely spaced markers are needed to fine-map QTL, and markers associated with genes and annotated sequence are needed to identify genes and sequence variation that may explain QTL.ResultsBovine expressed sequence tag (EST) and bacterial artificial chromosome (BAC)sequence data were used to develop 918 single nucleotide polymorphism (SNP) markers to map genes on the bovine linkage map. DNA of sires from the MARC reference population was used to detect SNPs, and progeny and mates of heterozygous sires were genotyped. Chromosome assignments for 861 SNPs were determined by twopoint analysis, and positions for 735 SNPs were established by multipoint analyses. Linkage maps of bovine autosomes with these SNPs represent 4585 markers in 2475 positions spanning 3058 cM . Markers include 3612 microsatellites, 913 SNPs and 60 other markers. Mean separation between marker positions is 1.2 cM. New SNP markers appear in 511 positions, with mean separation of 4.7 cM. Multi-allelic markers, mostly microsatellites, had a mean (maximum) of 216 (366) informative meioses, and a mean 3-lod confidence interval of 3.6 cM Bi-allelic markers, including SNP and other marker types, had a mean (maximum) of 55 (191) informative meioses, and were placed within a mean 8.5 cM 3-lod confidence interval. Homologous human sequences were identified for 1159 markers, including 582 newly developed and mapped SNP.ConclusionAddition of these EST- and BAC-based SNPs to the bovine linkage map not only increases marker density, but provides connections to gene-rich physical maps, including annotated human sequence. The map provides a resource for fine-mapping quantitative trait loci and identification of positional candidate genes, and can be integrated with other data to guide and refine assembly of bovine genome sequence. Even after the bovine genome is completely sequenced, the map will continue to be a useful tool to link observable phenotypes and animal genotypes to underlying genes and molecular mechanisms influencing economically important beef and dairy traits.


Journal of Animal Science | 2011

Partial-genome evaluation of postweaning feed intake and efficiency of crossbred beef cattle

W. M. Snelling; M. F. Allan; J. W. Keele; L. A. Kuehn; R. M. Thallman; G. L. Bennett; C. L. Ferrell; T. G. Jenkins; H. C. Freetly; M. K. Nielsen; Kelsey M. Rolfe

The effects of individual SNP and the variation explained by sets of SNP associated with DMI, metabolic midtest BW, BW gain, and feed efficiency, expressed as phenotypic and genetic residual feed intake, were estimated from BW and the individual feed intake of 1,159 steers on dry lot offered a 3.0 Mcal/kg ration for at least 119 d before slaughter. Parents of these F(1) × F(1) (F(1)(2)) steers were AI-sired F(1) progeny of Angus, Charolais, Gelbvieh, Hereford, Limousin, Red Angus, and Simmental bulls mated to US Meat Animal Research Center Angus, Hereford, and MARC III composite females. Steers were genotyped with the BovineSNP50 BeadChip assay (Illumina Inc., San Diego, CA). Effects of 44,163 SNP having minor allele frequencies >0.05 in the F(1)(2) generation were estimated with a mixed model that included genotype, breed composition, heterosis, age of dam, and slaughter date contemporary groups as fixed effects, and a random additive genetic effect with recorded pedigree relationships among animals. Variance in this population attributable to sets of SNP was estimated with models that partitioned the additive genetic effect into a polygenic component attributable to pedigree relationships and a genotypic component attributable to genotypic relationships. The sets of SNP evaluated were the full set of 44,163 SNP and subsets containing 6 to 40,000 SNP selected according to association with phenotype. Ninety SNP were strongly associated (P < 0.0001) with at least 1 efficiency or component trait; these 90 accounted for 28 to 46% of the total additive genetic variance of each trait. Trait-specific sets containing 96 SNP having the strongest associations with each trait explained 50 to 87% of additive variance for that trait. Expected accuracy of steer breeding values predicted with pedigree and genotypic relationships exceeded the accuracy of their sires predicted without genotypic information, although gains in accuracy were not sufficient to encourage that performance testing be replaced by genotyping and genomic evaluations.


Journal of Animal Science | 2012

Gene network analyses of first service conception in Brangus heifers: Use of genome and trait associations, hypothalamic-transcriptome information, and transcription factors

M. R. S. Fortes; W. M. Snelling; Antonio Reverter; Shivashankar H. Nagaraj; S. A. Lehnert; R. J. Hawken; Kasey L. DeAtley; S. O. Peters; G. A. Silver; Gonzalo Rincon; Juan F. Medrano; Alma Islas-Trejo; Milton G. Thomas

Measures of heifer fertility are economically relevant traits for beef production systems and knowledge of candidate genes could be incorporated into future genomic selection strategies. Ten traits related to growth and fertility were measured in 890 Brangus heifers (3/8 Brahman × 5/8 Angus, from 67 sires). These traits were: BW and hip height adjusted to 205 and 365 d of age, postweaning ADG, yearling assessment of carcass traits (i.e., back fat thickness, intramuscular fat, and LM area), as well as heifer pregnancy and first service conception (FSC). These fertility traits were collected from controlled breeding seasons initiated with estrous synchronization and AI targeting heifers to calve by 24 mo of age. The BovineSNP50 BeadChip was used to ascertain 53,692 SNP genotypes for ∼802 heifers. Associations of genotypes and phenotypes were performed and SNP effects were estimated for each trait. Minimally associated SNP (P < 0.05) and their effects across the 10 traits formed the basis for an association weight matrix and its derived gene network related to FSC (57.3% success and heritability = 0.06 ± 0.05). These analyses yielded 1,555 important SNP, which inferred genes linked by 113,873 correlations within a network. Specifically, 1,386 SNP were nodes and the 5,132 strongest correlations (|r| ≥ 0.90) were edges. The network was filtered with genes queried from a transcriptome resource created from deep sequencing of RNA (i.e., RNA-Seq) from the hypothalamus of a prepubertal and a postpubertal Brangus heifer. The remaining hypothalamic-influenced network contained 978 genes connected by 2,560 edges or predicted gene interactions. This hypothalamic gene network was enriched with genes involved in axon guidance, which is a pathway known to influence pulsatile release of LHRH. There were 5 transcription factors with 21 or more connections: ZMAT3, STAT6, RFX4, PLAGL1, and NR6A1 for FSC. The SNP that identified these genes were intragenic and were on chromosomes 1, 5, 9, and 11. Chromosome 5 harbored both STAT6 and RFX4. The large number of interactions and genes observed with network analyses of multiple sources of genomic data (i.e., GWAS and RNA-Seq) support the concept of FSC being a polygenic trait.


Journal of Animal Science | 2012

Accuracy of genomic breeding values in multibreed beef cattle populations derived from deregressed breeding values and phenotypes.

K. L. Weber; R. M. Thallman; J. W. Keele; W. M. Snelling; G. L. Bennett; T. P. L. Smith; T. G. McDaneld; M. F. Allan; A. L. Van Eenennaam; L. A. Kuehn

Genomic selection involves the assessment of genetic merit through prediction equations that allocate genetic variation with dense marker genotypes. It has the potential to provide accurate breeding values for selection candidates at an early age and facilitate selection for expensive or difficult to measure traits. Accurate across-breed prediction would allow genomic selection to be applied on a larger scale in the beef industry, but the limited availability of large populations for the development of prediction equations has delayed researchers from providing genomic predictions that are accurate across multiple beef breeds. In this study, the accuracy of genomic predictions for 6 growth and carcass traits were derived and evaluated using 2 multibreed beef cattle populations: 3,358 crossbred cattle of the U.S. Meat Animal Research Center Germplasm Evaluation Program (USMARC_GPE) and 1,834 high accuracy bull sires of the 2,000 Bull Project (2000_BULL) representing influential breeds in the U.S. beef cattle industry. The 2000_BULL EPD were deregressed, scaled, and weighted to adjust for between- and within-breed heterogeneous variance before use in training and validation. Molecular breeding values (MBV) trained in each multibreed population and in Angus and Hereford purebred sires of 2000_BULL were derived using the GenSel BayesCπ function (Fernando and Garrick, 2009) and cross-validated. Less than 10% of large effect loci were shared between prediction equations trained on (USMARC_GPE) relative to 2000_BULL although locus effects were moderately to highly correlated for most traits and the traits themselves were highly correlated between populations. Prediction of MBV accuracy was low and variable between populations. For growth traits, MBV accounted for up to 18% of genetic variation in a pooled, multibreed analysis and up to 28% in single breeds. For carcass traits, MBV explained up to 8% of genetic variation in a pooled, multibreed analysis and up to 42% in single breeds. Prediction equations trained in multibreed populations were more accurate for Angus and Hereford subpopulations because those were the breeds most highly represented in the training populations. Accuracies were less for prediction equations trained in a single breed due to the smaller number of records derived from a single breed in the training populations.


Journal of Animal Science | 2011

Predicting breed composition using breed frequencies of 50,000 markers from the US Meat Animal Research Center 2,000 Bull Project

L. A. Kuehn; J. W. Keele; G. L. Bennett; T. G. McDaneld; T. P. L. Smith; W. M. Snelling; Tad S. Sonstegard; R. M. Thallman

Knowledge of breed composition can be useful in multiple aspects of cattle production, and can be critical for analyzing the results of whole genome-wide association studies currently being conducted around the world. We examine the feasibility and accuracy of using genotype data from the most prevalent bovine genome-wide association studies platform, the Illumina BovineSNP50 array (Illumina Inc., San Diego, CA), to estimate breed composition for individual breeds of cattle. First, allele frequencies (of Illumina-defined allele B) of SNP on the array for each of 16 beef cattle breeds were defined by genotyping a large set of more than 2,000 bulls selected in cooperation with the respective breed associations to be representative of their breed. With these breed-specific allele frequencies, the breed compositions of approximately 2,000 two-, three-, and four-way cross (of 8 breeds) cattle produced at the US Meat Animal Research Center were predicted by using a simple multiple regression technique or Mendel (http://www.genetics.ucla.edu/software/mendel) and their genotypes from the Illumina BovineSNP50 array, and were then compared with pedigree-based estimates of breed composition. The accuracy of marker-based breed composition estimates was 89% when using either estimation method for all breeds except Angus and Red Angus (averaged 79%), based on comparing estimates with pedigree-based average breed composition. Accuracy increased to approximately 88% when these 2 breeds were combined into an aggregate Angus group. Additionally, we used a subset of these markers, approximately 3,000 that populate the Illumina Bovine3K (Illumina Inc.), to see whether breed composition could be estimated with similar accuracy when using this reduced panel of SNP makers. When breed composition was estimated using only SNP in common with the Bovine 3K array, accuracy was slightly reduced to 83%. These results suggest that SNP data from these arrays could be used to estimate breed composition in most US beef cattle in situations where pedigree is not known (e.g., multiple-sire natural service matings, non-source-verified animals in feedlots or at slaughter). This approach can aid analyses that depend on knowledge of breed composition, including identification and adjustment of breed-based population stratification, when performing genome-wide association studies on populations with incomplete pedigrees. In addition, SNP-based breed composition estimates may facilitate fitting cow germplasm to the environment, managing cattle in the feedlot, and tracing disease cases back to the geographic region or farm of origin.

Collaboration


Dive into the W. M. Snelling's collaboration.

Top Co-Authors

Avatar

L. A. Kuehn

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

J. W. Keele

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

H. C. Freetly

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

G. L. Bennett

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. P. L. Smith

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

R. M. Thallman

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

A. K. Lindholm-Perry

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

T. G. McDaneld

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Brittney N. Keel

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

C. L. Ferrell

United States Department of Agriculture

View shared research outputs
Researchain Logo
Decentralizing Knowledge