W. M. Snow
Indiana University Bloomington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W. M. Snow.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008
Christopher Lavelle; David V. Baxter; A. Bogdanov; V. P. Derenchuk; H. Kaiser; M. Leuschner; M. A. Lone; W. Lozowski; H. Nann; B. v. Przewoski; N. Remmes; T. Rinckel; Y. Shin; W. M. Snow; P. E. Sokol
Abstract The Low Energy Neutron Source (LENS) is an accelerator-based pulsed cold neutron facility under construction at the Indiana University Cyclotron Facility (IUCF). The idea behind LENS is to produce pulsed cold neutron beams starting with ∼ MeV neutrons from (p,n) reactions in Be which are moderated to meV energies and extracted from a small solid angle for use in neutron instruments which can operate efficiently with relatively broad ( ∼ 1 ms ) neutron pulse widths. Although the combination of the features and operating parameters of this source is unique at present, the neutronic design possesses several features similar to those envisioned for future neutron facilities such as long-pulsed spallation sources (LPSS) and very cold neutron (VCN) sources. We describe the underlying ideas and design details of the target/moderator/reflector system (TMR) and compare measurements of its brightness, energy spectrum, and emission time distribution under different moderator configurations with MCNP simulations. Brightness measurements using an ambient temperature water moderator agree with MCNP simulations within the 20% accuracy of the measurement. The measured neutron emission time distribution from a solid methane moderator is in agreement with simulation and the cold neutron flux is sufficient for neutron scattering studies of materials. We describe some possible modifications to the existing design which would increase the cold neutron brightness with negligible effect on the emission time distribution.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2000
G L. Jones; Thomas R. Gentile; Alan K. Thompson; Z Chowdhuri; Maynard S. Dewey; W. M. Snow; F. E. Wietfeldt
Abstract Neutron spin filters based on polarized 3 He are useful over a wide neutron energy range and have a large angular acceptance among other advantages. Two optical pumping methods, spin-exchange and metastability-exchange, can produce the volume of highly polarized 3 He gas required for such neutron spin filters. We report a test of polarizers based on each of these two methods on a new cold, monochromatic neutron beam line at the NIST Center for Neutron Research.
Physical Review Letters | 2013
Bulatowicz M; Griffith R; Michael Larsen; Mirijanian J; Fu Cb; E. S. Smith; W. M. Snow; Yan H; Thad G. Walker
Various theories beyond the standard model predict new particles with masses in the sub-eV range with very weak couplings to ordinary matter. A new P-odd and T-odd interaction between polarized and unpolarized nucleons proportional to K·r is one such possibility, where r is the distance between the nucleons and K is the spin of the polarized nucleon. Such an interaction involving a scalar coupling gs at one vertex and a pseudoscalar coupling gp at the polarized nucleon vertex can be induced by the exchange of spin-0 bosons. We used the NMR cell test station at Northrop Grumman Corporation to search for NMR frequency shifts in polarized 129Xe and 131Xe when a nonmagnetic zirconia rod is moved near the NMR cell. Long (T2∼20 s) spin-relaxation times allow precision measurements of the NMR frequency ratios, which are insensitive to magnetic field fluctuations. Combined with existing theoretical calculations of the neutron spin contribution to the nuclear angular momentum in xenon nuclei, the measurements improve the laboratory upper bound on the product gsgp(n) by 2 orders of magnitude for distances near 1 mm. The sensitivity of this technique can be increased by at least two more orders of magnitude.
Physical Review C | 2005
Jeffrey S. Nico; Maynard S. Dewey; David M. Gilliam; Fred E. Wietfeldt; Xiang Fei; W. M. Snow; G L. Greene; J. Pauwels; R. Eykens; A. Lamberty; J. Van Gestel; R.D. Scott
A measurement of the neutron lifetime
Journal of Research of the National Institute of Standards and Technology | 2001
Thomas R. Gentile; Rich Dr; Alan K. Thompson; W. M. Snow; G. L. Jones
{\ensuremath{\tau}}_{n}
Physical Review Letters | 2003
Maynard S. Dewey; David M. Gilliam; Jeffrey S. Nico; Fred E. Wietfeldt; Xiang Fei; W. M. Snow; G L. Greene; J. Pauwels; R. Eykens; A. Lamberty; J Van gestel
performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2002
D.R. Rich; J. D. Bowman; B. E. Crawford; P. P. J. Delheij; M.A. Espy; T. Haseyama; Gordon L. Jones; C.D. Keith; J. N. Knudson; Mark Bancroft Leuschner; A. Masaike; Y. Masuda; Y. Matsuda; S. I. Penttilä; V.R. Pomeroy; Debbie Smith; W. M. Snow; J.J. Szymanski; S. L. Stephenson; Alan K. Thompson; V. W. Yuan
{\ensuremath{\tau}}_{n}=(886.3\ifmmode\pm\else\textpm\fi{}1.2[\mathrm{stat}]\ifmmode\pm\else\textpm\fi{}3.2[\mathrm{sys}])\phantom{\rule{0.3em}{0ex}}s
Physical Review D | 2016
Ke Li; Muhammad Arif; David G. Cory; Robert Haun; Benjamin Heacock; Michael G. Huber; J. Nsofini; Dimitry A. Pushin; Parminder Saggu; Dusan Sarenac; Chandra Shahi; Vladimir Skavysh; W. M. Snow; A. R. Young
, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular, the mass of the deposit and the
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2004
G. S. Mitchell; C. Blessinger; J. D. Bowman; T. E. Chupp; Kevin Patrick Coulter; M.T. Gericke; G. L. Jones; Mark Bancroft Leuschner; H. Nann; S. A. Page; S. I. Penttilä; T. B. Smith; W. M. Snow; W. S. Wilburn
^{6}\mathrm{Li}
Review of Scientific Instruments | 2015
Steven R. Parnell; A.L. Washington; Ke Li; H. Yan; P. Stonaha; F. Li; T. Wang; A. Walsh; W. Chen; Andrew J. Parnell; J. P. A. Fairclough; David V. Baxter; W. M. Snow; Roger Pynn