Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. N. Brandt is active.

Publication


Featured researches published by W. N. Brandt.


Nature | 2009

Broad line emission from iron K- and L-shell transitions in the active galaxy 1H 0707-495

A. C. Fabian; A. Zoghbi; R. R. Ross; P. Uttley; Luigi C. Gallo; W. N. Brandt; A. J. Blustin; Th. Boller; M. D. Caballero-Garcia; Josefin Larsson; Jon M. Miller; G. Miniutti; G. Ponti; R. C. Reis; Christopher S. Reynolds; Yasuo Tanaka; Andrew J Young

Since the 1995 discovery of the broad iron K-line emission from the Seyfert galaxy MCG–6-30-15 (ref. 1), broad iron K lines have been found in emission from several other Seyfert galaxies, from accreting stellar-mass black holes and even from accreting neutron stars. The iron K line is prominent in the reflection spectrum created by the hard-X-ray continuum irradiating dense accreting matter. Relativistic distortion of the line makes it sensitive to the strong gravity and spin of the black hole. The accompanying iron L-line emission should be detectable when the iron abundance is high. Here we report the presence of both iron K and iron L emission in the spectrum of the narrow-line Seyfert 1 galaxy 1H 0707-495. The bright iron L emission has enabled us to detect a reverberation lag of about 30 s between the direct X-ray continuum and its reflection from matter falling into the black hole. The observed reverberation timescale is comparable to the light-crossing time of the innermost radii around a supermassive black hole. The combination of spectral and timing data on 1H 0707-495 provides strong evidence that we are witnessing emission from matter within a gravitational radius, or a fraction of a light minute, from the event horizon of a rapidly spinning, massive black hole.


The Astrophysical Journal | 2007

Multiwavelength Study of Massive Galaxies at z ~ 2. II. Widespread Compton-thick Active Galactic Nuclei and the Concurrent Growth of Black Holes and Bulges

Emanuele Daddi; D. M. Alexander; M. Dickinson; R. Gilli; A. Renzini; D. Elbaz; A. Cimatti; Ranga Ram Chary; D. T. Frayer; F. E. Bauer; W. N. Brandt; Mauro Giavalisco; Norman A. Grogin; Minh T. Huynh; J. Kurk; Marco Mignoli; G. Morrison; Alexandra Pope; Swara Ravindranath

Approximately 20‐30% of 1.4 6.2 keV. The stacked X-ray spectrum rises steeply at > 10 keV, suggesting that these sources host Compton-thick Active Galactic Nuclei (AGNs) with column densities NH > ∼ 10 24 cm −2 and an average, unobscured X-ray luminosity L2−8keV ≈(1‐4) × 10 43 erg s −1 . Their sky density (∼ 3200 deg −2 ) and space density (∼ 2.6 × 10 −4 Mpc −3 ) are twice those of X-ray detected AGNs at z ≈ 2, and much larger than those of previously-known Compton thick sources at similar redshifts. The mid-IR excess galaxies are part of the long sought-after population of distant heavily obscured AGNs predicted by synthesis models of the X-ray background. The fraction of mid-IR excess objects increases with galaxy mass, reaching ∼ 50‐60% for M ∼ 10 11 M⊙, an effect likely connected with downsizing in galaxy formation. The ratio of the inferred black hole growth rate from these Compton-thick sources to the global star formation rate at z = 2 is similar to the mass ratio of black holes to stars in local s pheroids, implying concurrent growth of both within the precursors of today’s massive galaxies. Subject headings:galaxies: evolution — galaxies: formation — galaxies: active — X-rays: galaxies


The Astrophysical Journal | 2006

Infrared power-law galaxies in the chandra deep field-south: Active galactic nuclei and ultraluminous infrared galaxies

A. Alonso-Herrero; P. G. Pérez-González; D. M. Alexander; G. H. Rieke; D. Rigopoulou; Pauline Barmby; Casey Papovich; Jane R. Rigby; F. E. Bauer; W. N. Brandt; E. Egami; Steven P. Willner; H. Dole; Jia-Sheng Huang

We investigate the nature of a sample of 92 Spitzer MIPS 24 � m–selected galaxies in the CDF-S, showing powerlaw–like emission in the Spitzer IRAC 3.6–8 � m bands. The main goal is to determine whether the galaxies not detectedinX-rays (47%ofthesample)arepartofthehypotheticalpopulationofobscuredAGNsnotdetectedevenin deep X-ray surveys. The majority of the IR power-law galaxies are ULIRGs at z > 1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical-to-IR SEDs of the X-ray–detected galaxies are almost equally divided between aBLAGN SED class (similar to anopticallyselected QSO) and an NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRGs (e.g., Mrk 231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter and possibly more obscured. Moreover, the IR power-law galaxies have SEDs significantly different from those of high-z (zsp > 1) IR (24 � m) selected and optically bright (VVDS IAB � 24) star-forming galaxies whoseSEDsshow averyprominent stellar bumpat1.6 � m.ThegalaxiesdetectedinX-rays have2–8keVrest-frame luminosities typical ofAGNs. Thegalaxies notdetectedinX-rayshave global X-ray–to–mid-IR SED properties that make them good candidates to contain IR-bright X-ray–absorbed AGNs. If all these sources are actually obscured AGNs, we would observe a ratio of obscured to unobscured 24 � m–detected AGNs of 2:1, whereas models predict a ratio of up to 3:1. Additional studies using Spitzer to detect X-ray–quiet AGNs are likely to find more such obscured sources. Subject headings: galaxies: active — galaxies: high-redshift — infrared: galaxies — X-rays: galaxies Online material: color figuresWe investigate the nature of a sample of 92 Spitzer/MIPS 24 μm selected galaxies in the CDFS, showing power law-like emission in the Spitzer/IRAC 3.6– 8μm bands. The main goal is to determine whether the galaxies not detected in X-rays (47% of the sample) are part of the hypothetical population of obscured AGN not detected even in deep X-ray surveys. The majority of the IR powerlaw galaxies are ULIRGs at z > 1, and those with LIRG-like IR luminosities are usually detected in X-rays. The optical to IR spectral energy distributions (SEDs) of the X-ray detected galaxies are almost equally divided between a BLAGN SED class (similar to an optically selected QSO) and a NLAGN SED (similar to the BLAGN SED but with an obscured UV/optical continuum). A small fraction of SEDs resemble warm ULIRG galaxies (e.g., Mrk 231). Most galaxies not detected in X-rays have SEDs in the NLAGN+ULIRG class as they tend to be optically fainter, and possibly more obscured. Moreover, the IR powerlaw galaxies have SEDs significantly different from those of high-z (zsp > 1) IR (24 μm) selected and optically bright (VVDS IAB ≤ 24) star-forming galaxies Departamento de Astrof́ısica Molecular e Infrarroja, Instituto de Estructura de la Materia, CSIC, E28006 Madrid, Spain; e-mail: [email protected] Steward Observatory, The University of Arizona, 933 N. Cherry, Tucson, AZ 85721 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK Department of Astrophysics, Oxford University, Keble Rd, Oxford, OX1 3RH, UK Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 Columbia Astrophysics Laboratory, Columbia University Pupin Laboratories, 550 W. 120th St., Rm 1418, NY, 10027 Department of Astronomy and Astrophysics; The Pennsylvania State University; 525 Davey Lab; University Park, PA 16802 Institut d’Astrophysique Spatiale, bât 121, Université Paris Sud, F-91405 Orsay Cedex, France


The Astrophysical Journal | 2007

Multiwavelength study of massive galaxies at z similar to 2. II. Widespread compton-thick active galactic nuclei and the concurrent growth of black holes and bulges

E. Daddi; D. M. Alexander; M. Dickinson; R. Gilli; A. Renzini; D. Elbaz; A. Cimatti; R.-R. Chary; D. T. Frayer; F. E. Bauer; W. N. Brandt; Mauro Giavalisco; Norman A. Grogin; Minh T. Huynh; J. Kurk; M. Mignoli; G. Morrison; Alexandra Pope; Swara Ravindranath

Approximately 20‐30% of 1.4 6.2 keV. The stacked X-ray spectrum rises steeply at > 10 keV, suggesting that these sources host Compton-thick Active Galactic Nuclei (AGNs) with column densities NH > ∼ 10 24 cm −2 and an average, unobscured X-ray luminosity L2−8keV ≈(1‐4) × 10 43 erg s −1 . Their sky density (∼ 3200 deg −2 ) and space density (∼ 2.6 × 10 −4 Mpc −3 ) are twice those of X-ray detected AGNs at z ≈ 2, and much larger than those of previously-known Compton thick sources at similar redshifts. The mid-IR excess galaxies are part of the long sought-after population of distant heavily obscured AGNs predicted by synthesis models of the X-ray background. The fraction of mid-IR excess objects increases with galaxy mass, reaching ∼ 50‐60% for M ∼ 10 11 M⊙, an effect likely connected with downsizing in galaxy formation. The ratio of the inferred black hole growth rate from these Compton-thick sources to the global star formation rate at z = 2 is similar to the mass ratio of black holes to stars in local s pheroids, implying concurrent growth of both within the precursors of today’s massive galaxies. Subject headings:galaxies: evolution — galaxies: formation — galaxies: active — X-rays: galaxies


Astronomy and Astrophysics | 2012

The mean star formation rate of X-ray selected active galaxies and its evolution from z ~ 2.5: results from PEP-Herschel

D. Rosario; P. Santini; D. Lutz; L. Shao; R. Maiolino; D. M. Alexander; B. Altieri; P. Andreani; H. Aussel; F. E. Bauer; S. Berta; A. Bongiovanni; W. N. Brandt; M. Brusa; J. Cepa; A. Cimatti; Thomas J. Cox; E. Daddi; D. Elbaz; A. Fontana; N. M. Förster Schreiber; R. Genzel; A. Grazian; E. Le Floc'h; B. Magnelli; V. Mainieri; Hagai Netzer; R. Nordon; I. Pérez Garcia; A. Poglitsch

We study relationships between star-formation rate (SFR) and the accretion luminosity and nuclear obscuration of X-ray selected active galactic nuclei (AGNs) using a combination of deep far-infrared (FIR) and X-ray data in three key extragalactic survey fields (GOODS-South, GOODS-North and COSMOS), as part of the PACS Evolutionary Probe (PEP) program. The use of three fields with differing areas and depths enables us to explore trends between the global FIR luminosity of the AGN hosts and the luminosity of the active nucleus across 4.5 orders of magnitude in AGN luminosity (LAGN) and spanning redshifts from the Local Universe to z = 2.5. Using imaging from the Herschel/PACS instrument in 2−3 bands, we combine FIR detections and stacks of undetected objects to arrive at mean fluxes for subsamples in bins of redshift and X-ray luminosity. We constrain the importance of AGN-heated dust emission in the FIR and confirm that the majority of the FIR emission of AGNs is produced by cold dust heated by star-formation in their host galaxies. We uncover characteristic trends between the mean FIR luminosity (L60) and accretion luminosity of AGNs, which depend both on LAGN and redshift. At low AGN luminosities, accretion and SFR are uncorrelated at all redshifts, consistent with a scenario where most low-luminosity AGNs are primarily fueled by secular processes in their host galaxies. At high AGN luminosities, a significant correlation is observed between L60 and LAGN, but only among AGNs at low and moderate redshifts (z 1) suggesting that the role of mergers is less important at these epochs. At all redshifts, we find essentially no relationship between L60 and nuclear obscuration across five orders of magnitude in obscuring Hydrogen column density (NH), suggesting that various mechanisms are likely to be responsible for obscuring X-rays in active galaxies. We discuss a broad scenario which can account for these trends: one in which two different modes of AGN fueling operate in the low- and high-luminosity regimes of SMBH accretion. We postulate that the dominant mode of accretion among high-luminosity AGNs evolves with redshift. Our study, as well as a body of evidence from the literature and emerging knowledge about the properties of high redshift galaxies, supports this scenario.


The Astrophysical Journal | 2010

A Chandra Perspective on Galaxy-wide X-ray Binary Emission and its Correlation with Star Formation Rate and Stellar Mass: New Results from Luminous Infrared Galaxies

B. D. Lehmer; D. M. Alexander; F. E. Bauer; W. N. Brandt; Andy D. Goulding; Leigh Jenkins; A. Ptak; T. P. Roberts

We present newChandra observations that complete a sample of seventeen (17) luminous infrared galaxies (LIRGs) with D< 60 Mpc and low Galactic column densities of NH 5 × 10 20 cm −2 . The LIRGs in our sample have total infrared (8–1000 μm) luminosities in the range of LIR ≈ (1–8) × 10 11 L� . The high-resolution imaging and X-ray spectral information from our Chandra observations allow us to measure separately X-ray contributions from active galactic nuclei and normal galaxy processes (e.g., X-ray binaries and hot gas). We utilized total infrared plus UV luminosities to estimate star formation rates (SFRs) and K-band luminosities and optical colors to estimate stellar masses (M� ) for the sample. Under the assumption that the galaxy-wide 2–10 keV luminosity (L gal ) traces the combined emission from high-mass X-ray binaries (HMXBs) and low-mass X-ray binaries, and that the power output from these components is linearly correlated with SFR and M� , respectively, we constrain the relation L gal = αM� + βSFR. To achieve this, we construct a Chandra-based data set composed of our new LIRG sample combined with additional samples of less actively star-forming normal galaxies and more powerful LIRGs and ultraluminous infrared galaxies (ULIRGs) from the literature. Using these data, we measure best-fit values of α = (9.05 ± 0.37) × 10 28 erg s −1 M −1 ...


The Astrophysical Journal | 2003

XMM-Newton Reveals the Quasar Outflow in PG 1115+080

G. Chartas; W. N. Brandt; Sarah Connoran Gallagher

We report on an observation of the broad absorption line (BAL) quasar PG 1115+080 performed with the XMM-Newton observatory. Spectral analysis reveals the second case of a relativistic X-ray-absorbing outflow in a BAL quasar. The first case was revealed in a recent observation of APM 08279+5255 with the Chandra X-Ray Observatory. As in the case of APM 08279+5255, the observed flux of PG 1115+080 is greatly magnified by gravitational lensing. The relatively high redshift (z = 1.72) of the quasar places the redshifted energies of resonant absorption features in a sensitive portion of the XMM-Newton spectral response. The spectrum indicates the presence of complex low-energy absorption in the 0.2-0.6 keV observed energy band and high-energy absorption in the 2-5 keV observed energy band. The high-energy absorption is best modeled by two Gaussian absorption lines with rest-frame energies of 7.4 and 9.5 keV. Assuming that these two lines are produced by resonant absorption due to Fe XXV Kα, we infer that the X-ray absorbers are outflowing with velocities of ~ 0.10c and ~ 0.34c, respectively. We have detected significant variability of the energies and widths of the X-ray BALs in PG 1115+080 and APM 08279+5255 over timescales of 19 and 1.8 weeks (proper time), respectively. The BAL variability observed from APM 08279+5255 supports our earlier conclusion that these absorbers are most likely launched at relatively small radii of 1016(Mbh/M8)1/2 cm. A comparison of the ionization properties and column densities of the low-energy and high-energy absorbers indicates that these absorbers are likely distinct; however, higher spectral resolution is needed to confirm this result. Finally, we comment on prospects for constraining the kinematic and ionization properties of these X-ray BALs with the next generation of X-ray observatories.


Monthly Notices of the Royal Astronomical Society | 2011

The LABOCA survey of the Extended Chandra Deep Field-South: a photometric redshift survey of submillimetre galaxies

J. L. Wardlow; Ian Smail; K. E. K. Coppin; D. M. Alexander; W. N. Brandt; A. L. R. Danielson; B. Luo; A. M. Swinbank; Frederick M. Walter; A. Weiss; Y. Q. Xue; Stefano Zibetti; Frank Bertoldi; A. D. Biggs; Sydney Chapman; H. Dannerbauer; James Dunlop; Eric Gawiser; R. J. Ivison; Kirsten Kraiberg Knudsen; A. Kovács; Cedric G. Lacey; K. M. Menten; N. Padilla; Hans-Walter Rix; P. van der Werf

We derive photometric redshifts from 17-band optical to mid-infrared photometry of 78 robust radio, 24-mu m and Spitzer IRAC counterparts to 72 of the 126 submillimetre galaxies (SMGs) selected at 870 mu m by LABOCA observations in the Extended Chandra Deep Field-South (ECDF-S). We test the photometric redshifts of the SMGs against the extensive archival spectroscopy in the ECDF-S. The median photometric redshift of identified SMGs is z = 2.2 +/- 0.1, the standard deviation is sigma(z) = 0.9 and we identify 11 (similar to 15 per cent) high-redshift (z >= 3) SMGs. A statistical analysis of sources in the error circles of unidentified SMGs identifies a population of possible counterparts with a redshift distribution peaking at z = 2.5 +/- 0.2, which likely comprises similar to 60 per cent of the unidentified SMGs. This confirms that the bulk of the undetected SMGs are coeval with those detected in the radio/mid-infrared. We conclude that at most similar to 15 per cent of all the SMGs are below the flux limits of our IRAC observations and thus may lie at z greater than or similar to 3 and hence at most similar to 30 per cent of all SMGs have z greater than or similar to 3. We estimate that the full S(870 mu m) > 4mJy SMG population has a median redshift of 2.5 +/- 0.5. In contrast to previous suggestions, we find no significant correlation between submillimetre flux and redshift. The median stellar mass of the SMGs derived from spectral energy distribution fitting is (9.1 +/- 0.5) x 10(10)M(circle dot) although we caution that the uncertainty in the star formation histories results in a factor of similar to 5 uncertainty in these stellarmasses. Using a single temperature modified blackbody fit with beta = 1.5, the median characteristic dust temperature of SMGs is 37.4 +/- 1.4K. The infrared luminosity function shows that SMGs at z = 2-3 typically have higher far-infrared luminosities and luminosity density than those at z = 1-2. This is mirrored in the evolution of the star formation rate density (SFRD) for SMGs which peaks at z similar to 2. The maximum contribution of bright SMGs to the global SFRD (similar to 5 per cent for SMGs with S(870 mu m) greater than or similar to 4mJy or similar to 50 per cent extrapolated to SMGs with S(870 mu m) > 1mJy) also occurs at z similar to 2.


The Astrophysical Journal | 2002

X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines

Sarah Connoran Gallagher; W. N. Brandt; G. Chartas; Gordon Garmire

For the population of quasi-stellar objects (QSOs) with broad ultraviolet absorption lines, we are just beginning to accumulate X-ray observations with enough counts for spectral analysis at CCD resolution. From a sample of eight QSOs (including four broad absorption line [BAL] QSOs and three mini-BAL QSOs) with ASCA or Chandra spectra with more than 200 counts, general patterns are emerging. Their power-law X-ray continua are typical of normal QSOs with Γ ≈ 2.0, and the signatures of a significant column density [NH ≈ (0.1-4) × 1023 cm-2] of intrinsic, absorbing gas are clear. Correcting the X-ray spectra for intrinsic absorption recovers a normal ultraviolet-to-X-ray flux ratio, indicating that the spectral energy distributions of this population are not inherently anomalous. In addition, a large fraction of our sample shows significant evidence for complexity in the absorption. The subset of BAL QSOs with broad Mg II absorption apparently suffers from Compton-thick absorption completely obscuring the direct continuum in the 2-10 keV X-ray band, complicating any measurement of their intrinsic X-ray spectral shapes.


Monthly Notices of the Royal Astronomical Society | 2014

An ALMA survey of sub-millimetre galaxies in the extended chandra deep field south: The far-infrared properties of SMGs

A. M. Swinbank; J. M. Simpson; Ian Smail; C. M. Harrison; J. A. Hodge; A. Karim; F. Walter; D. M. Alexander; W. N. Brandt; C. De Breuck; E. da Cunha; S. C. Chapman; K. E. K. Coppin; A. L. R. Danielson; H. Dannerbauer; Roberto Decarli; T. R. Greve; R. J. Ivison; Kirsten Kraiberg Knudsen; Claudia del P. Lagos; E. Schinnerer; A. P. Thomson; J. L. Wardlow; A. Weiß; P. van der Werf

We exploit Atacama Large Millimeter Array (ALMA) 870 mu m observations of sub-millimetre sources in the Extended Chandra Deep Field South to investigate the far-infrared properties of high-redshift sub-millimetre galaxies (SMGs). Using the precisely located 870 mu m ALMA positions of 99 SMGs, together with 24 mu m and radio imaging, we deblend the Herschel/SPIRE imaging to extract their far-infrared fluxes and colours. The median redshifts for ALMA LESS (ALESS) SMGs which are detected in at least two SPIRE bands increases with wavelength of the peak in their spectral energy distributions (SEDs), with z = 2.3 +/- 0.2, 2.5 +/- 0.3 and 3.5 +/- 0.5 for the 250, 350 and 500 mu m peakers, respectively. 34 ALESS SMGs do not have a >3 sigma counterpart at 250, 350 or 500 mu m. These galaxies have a median photometric redshift derived from the rest-frame UV-mid-infrared SEDs of z = 3.3 +/- 0.5, which is higher than the full ALESS SMG sample; z = 2.5 +/- 0.2. We estimate the far-infrared luminosities and characteristic dust temperature of each SMG, deriving L-IR = (3.0 +/- 0.3) x 10(12) L-circle dot (SFR = 300 +/- 30 M-circle dot yr(-1)) and T-d = 32 +/- 1 K. The characteristic dust temperature of these high-redshift SMGs is Delta T-d = 3-5K lower than comparably luminous galaxies at z = 0, reflecting the more extended star formation in these systems. We show that the contribution of S-870 mu m >= 1 mJy SMGs to the cosmic star formation budget is 20 per cent of the total over the redshift range z similar to 1-4. Adopting an appropriate gas-to-dust ratio, we estimate a typical molecular mass of the ALESS SMGs of M-H2 = (4.2 +/- 0.4) x 10(10) M-circle dot. Finally, we show that SMGs with S-870 mu m > 1 mJy (L-IR greater than or similar to 10(12) L-circle dot) contain similar to 10 per cent of the z similar to 2 volume-averaged H-2 mass density.

Collaboration


Dive into the W. N. Brandt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

F. E. Bauer

Pontifical Catholic University of Chile

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donald P. Schneider

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Gordon Garmire

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

A. C. Fabian

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Fiona A. Harrison

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

D. Stern

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

S. E. Boggs

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge