W.R. Corwin
Oak Ridge National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by W.R. Corwin.
Archive | 2011
S.R. Greene; Jess C Gehin; David Eugene Holcomb; Juan J. Carbajo; Dan Ilas; Anselmo T Cisneros; Venugopal Koikal Varma; W.R. Corwin; Dane F Wilson; Graydon L. Yoder; A L Qualls; Fred J Peretz; George F. Flanagan; Dwight A Clayton; Eric Craig Bradley; Gary L Bell; John D. Hunn; Peter J Pappano; Mustafa Sacit Cetiner
This document presents the results of a study conducted at Oak Ridge National Laboratory during 2010 to explore the feasibility of small modular fluoride salt-cooled high temperature reactors (FHRs). A preliminary reactor system concept, SmATHR (for Small modular Advanced High Temperature Reactor) is described, along with an integrated high-temperature thermal energy storage or salt vault system. The SmAHTR is a 125 MWt, integral primary, liquid salt cooled, coated particle-graphite fueled, low-pressure system operating at 700 C. The system employs passive decay heat removal and two-out-of-three , 50% capacity, subsystem redundancy for critical functions. The reactor vessel is sufficiently small to be transportable on standard commercial tractor-trailer transport vehicles. Initial transient analyses indicated the transition from normal reactor operations to passive decay heat removal is accomplished in a manner that preserves robust safety margins at all times during the transient. Numerous trade studies and trade-space considerations are discussed, along with the resultant initial system concept. The current concept is not optimized. Work remains to more completely define the overall system with particular emphasis on refining the final fuel/core configuration, salt vault configuration, and integrated system dynamics and safety behavior.
Nuclear Engineering and Design | 1990
F.M. Haggag; W.R. Corwin; Randy K. Nanstad
Abstract Stainless steel weld overlay cladding was fabricated using the submerged arc, single-wire, oscillating-electrode, and the three-wire, series-arc methods. Three layers of cladding were applied to a pressure vessel plate to provide adequate thickness for fabrication of test specimens, and irradiations were conducted at temperatures and to fluences relevant to power reactor operation. Post-irradiation test results of all cladding specimens show that, in the test temperature range from – 125 to 288°C, the yield strength increased by 40 to 5%, ductility increased insignificantly, and there was almost no change in ultimate tensile strength. All cladding exhibited ductile-to-brittle transition behavior during Charpy impact testing due to the dominance of delta-ferrite failures at low temperatures. On the upper shelf, energy was reduced up to 50% due to irradiation exposure. In addition, radiation damage resulted in 13 to 100 C shifts of the Charpy impact transition temperature at the 41 J level. Furthermore, irradiation exposure of 12.5 mm-thick compact specimens (0.5TCS), from the three-wire cladding to an average fluence of 2.41 × 10 19 neutrons/cm 2 (> 1 MeV ), resulted in decreases in the initiation ductile fracture toughness, J Ic , and the tearing modulus in the test temperature range from – 125 to 288°C. This is in agreement with the reduction in both the CVN upper-shelf energy and the CVN lateral expansion.
Nuclear Engineering and Design | 1985
W.R. Corwin; Reynold G. Berggren; Randy K. Nanstad; R.J. Gray
Abstract Stainless steel weld overlay cladding was irradiated at temperatures and fluences relevant to power reactor operation. The cladding was applied to a pressure vessel steel plate by the submerged arc, single-wire, oscillating-electrode method. Three layers of cladding were applied. The first layer was type 309, and the upper two layers were type 308 stainless steel. The type 309 was diluted considerably by excessive melting of the base plate. Charpy V-notch and tensile specimens were irradiated at 288°C to a fluence of 2 × 10 23 neutrons/m 2 (> 1 MeV). When irradiated, both types 308 and 309 cladding increased 5 to 40% in yield strength and slightly increased in ductility in the temperature range from 25 to 288°C. All cladding exhibited ductile-to-brittle transition behavior during impact testing caused by temperature dependent failure of the δ-ferrite phase. The type 308 cladding, microstructurally typical of that in reactor pressure vessels, showed very little degradation in either upper-shelf energy or transition temperature due to irradiation. Conversely, the impact properties of the specimens containing the highly diluted type 309 cladding, microstructurally similar to that produced during some off-normal welding conditions in existing reactors, experienced significant increases in transition temperature and drops of up to 50% in upper-shelf energy.
Nuclear Engineering and Design | 1995
W.E. Pennell; W.R. Corwin
Abstract Development continues on the technology used to assess the safety of irradiation embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack-tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil-ductility temperature ( NDT ) performs better than the reference temperature for nil-ductility transition ( RT NDT ) as a normalizing parameter for shallow flaw fracture toughness data, (3) biaxial loading can reduce the shallow flaw fracture toughness, (4) stress based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow flaw fracture toughness because in-plane stresses at the crack-tip are not influenced by biaxial loading, and (5) an implicit strain based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation induced shift in Charpy V-notch vs. temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.
Archive | 2008
W.R. Corwin; Timothy D. Burchell; Yutai Katoh; Timothy McGreevy; Randy K. Nanstad; Weiju Ren; Lance Lewis Snead; Dane F Wilson
Since 2002, the Department of Energys (DOEs) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOEs Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOEs structural materials research activities being conducted to support VHTR development. By far, the largest portion of materials R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.
Nuclear Engineering and Design | 1987
W.R. Corwin
Abstract The existence of a layer of tough weld overlay cladding on the interior of a light-water reactor pressure vessel could mitigate damage caused during certain overcooling transients. The potential benefit of the cladding is that it could keep a short surface flaw, which would otherwise become long, from growing either by impeding crack initiation or by arresting a running crack. Two aspects critical to cladding behavior will be reported: irradiation effects on cladding toughness and the response of mechanically loaded, flawed structures in the presence of cladding. A two-phase irradiation experiment is being conducted. In the first phase, Charpy impact and tensile specimens from a single wire, submerged-arc stainless steel weld overlay were irradiated to 2 × 10 23 neutrons/m2 ( >1 MeV ) at 288°C. Typical, good quality pressure vessel cladding exhibited very little irradiation-induced degradation. However, ductile-to-brittle transition behavior, caused by temperature-dependent failure of the residual δ-ferrite, was observed. In contrast, specimens from a highly diluted, poor quality weldment were markedly embrittled. In the second phase of irradiations, now in progress, a commercially produced three-wire series arc weldment will be evaluated under identical irradiation and testing conditions as the first series. In addition, 0.5T compact specimens of both weldments and higher fluences will be examined. A two-phase program is also being conducted utilizing relatively large bend specimens that have been clad and flawed on the tension surface. The testing rationale is that if a surface flaw is pinned by the cladding and cannot grow longer, it will also not grow beyond a certain depth, thereby arresting the entire flaw in a stress field in which it would otherwise propagate through the specimen. The results of phase one showed that single wire cladding with low-to-moderate toughness appeared to have a limited ability to mitigate crack propagation. For the second phase, three-wire cladding has been deposited on a base plate with a very high ductile-to-brittle transition temperature allowing testing to ascertain the crack inhibiting capability of tough upper shelf cladding.
Nuclear Engineering and Design | 1986
C.E. Pugh; W.R. Corwin; R.H. Bryan; B.R. Bass
Recent results are summarized from HSST studies in three major areas that relate to assessing nuclear reactor pressure vessel integrity under pressurized-thermal-shock (PTS) conditions. These areas are irradiation effects on the fracture properties of stainless steel cladding, crack run-arrest behavior under non-isothermal conditions, and fracture behavior of a thick-wall vessel under combined thermal and pressure loadings. Since a layer of tough stainless steel weld overlay cladding on the interior of a pressure vessel could assist in limiting surface crack extension under PTS conditions, its resistance to radiation embrittlement was examined. A stainless steel overlay cladding, applied by a submerged arc, single-wire, oscillating-electrode method, was irradiated to 2 × 1023 neutrons/m2 (> 1 MeV) at 288°C. Yield strength increases up to 27% and a slight increase in ductility were observed. Charpy V-Notch data showed a ductile-to-brittle transition behavior caused by temperature-dependent failure of the 8-ferrite phase. The type 308 cladding, microstructurally typical of that in reactor pressure vessels, showed very little degradation in either upper-shelf energy or transition temperature due to irradiation. Crack-arrest behavior of A533 grade B class 1 steel was examined for temperatures extending above the onset of Charpy upper-shelf. Crack-arrest experiments that use wide-plate specimens have shown crack arrest occurring prior to transition to tearing or tensile instability. High values of crack-arrest toughness have been recorded (static values above 400 MPa m that are well above the maximum value that safety assessment criteria assume such materials can exhibit. A validation experiment was performed by exposing an intentionally flawed HSST intermediate test vessel to combined pressure and thermal transients. The experiment addressed warm-prestressing phenomena, crack propagation from brittle to ductile regions, and crack stabilization in ductile regions. Test and analysis results are summarized.
ASTM special technical publications | 1998
Stan T. Rosinski; W.R. Corwin
An international testing exercise was conducted under ASTM Committee E 10.02 to obtain a cross-comparison of material properties obtained from various types of subsize-specimen testing techniques. Sixteen organizations representing 10 countries initially participated in the exercise. Objectives were to (1) benchmark various subsize specimen testing techniques by comparing testing results with established material properties for the material tested, and (2) provide information to participants to improve the correlation of subsize specimen testing results with material properties determined through standard ASTM methods. The testing material for the cross-comparison exercise was the ASTM A533 grade B class I plate designated as HSST plate 03 provided by Oak Ridge National Laboratory. A variety of miniature testing techniques were utilized by the participants during this exercise. A summary of the exercise and a general comparison of the results obtained are provided. Detailed discussions on individual participant testing programs will be presented by each organization later in subsequent papers.
ASTM special technical publications | 1998
Jacques H. Giovanola; Richard W. Klopp; James E. Crocker; D.J. Alexander; W.R. Corwin; Randy K. Nanstad
The research objectives were to demonstrate the feasibility of using small fatigue pre-cracked round bars to measure the initiation fracture toughness of ductile nuclear pressure vessel steels and weldments and to refine and validate experiment and analysis procedures. Initiation fracture toughness values were measured for a duplicate of HSSI Weld 72W, unirradiated, in the temperature range -150° to 50°C, using small cracked round bar (CRB) specimens. The results were compared with the values obtained with 1T-CT specimens. The good agreement between the toughness values measured with CRB and 1T-CT specimens indicates that using small CRB specimens (possibly cut from Charpy bars) to measure fracture toughness is feasible. A relationship between J and the displacement due to the crack δ c r , where δ c r is obtained from extensometer measurements, was established experimentally. Fracture initiation in CRBs of the size investigated here occurred at or near maximum load, with the crack growth prior to maximum load being less than 200 μm. This observation, together with the unique relationship between J and δ c r , open the possibility of greatly simplified testing and data reduction procedures for fracture experiments with CRB.
Nuclear Engineering and Design | 1989
R.H. Bryan; B.R. Bass; S.E. Bolt; J.W. Bryson; W.R. Corwin; Randy K. Nanstad; John G. Merkle; G.C. Robinson
Abstract The second pressurized-thermal-shock experiment (PTSE-2) of the Heavy-Section Steel Technology Program was conceived to investigate fracture behavior of steel with low ductile-tearing resistance. The experiment was performed in the pressurized-thermal-shock test facility at the Oak Ridge National Laboratory. PTSE-2 was designed primarily to reveal the interaction of ductile and brittle modes of fracture and secondarily to investigates the effects of warm prestressing, A test vessel was prepared by inserting a cracklike flaw of well-defined geometry on the outside surface of the vessel. The flaw was 1 m long by ≈ 15 mm deep. The instrumented vessel was placed in the test facility in which it was initially heated to a uniform temperature and was then concurrently cooled on the outside and pressurized on the inside. These actions produced an evolution of temperature, toughness, and stress gradients relative to the prepared flaw that was appropriate to the planned objectives. The experiment was conducted in twoseparate transients, each one starting with the vessel nearly isothermal. The first transient induced a warm-prestressed state, during which K I , first exceeded K Ic . This was followed by repressurization until a cleavage fracture propagated and arrested. The final transient was designed to produce and investigate a cleavage crack propagation followed by unstable tearing. During this transient, the fracture events occurred as had been planned.