Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Ripley Ballou is active.

Publication


Featured researches published by W. Ripley Ballou.


The New England Journal of Medicine | 1997

A Preliminary Evaluation of a Recombinant Circumsporozoite Protein Vaccine against Plasmodium falciparum Malaria

José A. Stoute; Moncef Slaoui; D. Gray Heppner; Patricia Marie Momin; Kent E. Kester; Pierre Desmons; Bruce T. Wellde; Nathalie Garçon; Urszula Krzych; Martine Marchand; W. Ripley Ballou; Joe Cohen

BACKGROUND The candidate vaccines against malaria are poorly immunogenic and thus have been ineffective in preventing infection. We developed a vaccine based on the circumsporozoite protein of Plasmodium falciparum that incorporates adjuvants selected to enhance the immune response. METHODS The antigen consists of a hybrid in which the circumsporozoite protein fused to hepatitis B surface antigen (HBsAg) is expressed together with unfused HBsAg. We evaluated three formulations of this antigen in an unblinded trial in 46 subjects who had never been exposed to malaria. RESULTS Two of the vaccine formulations were highly immunogenic. Four subjects had adverse systemic reactions that may have resulted from the intensity of the immune response after the second dose, which led us to reduce the third dose. Twenty-two vaccinated subjects and six unimmunized controls underwent a challenge consisting of bites from mosquitoes infected with P. falciparum. Malaria developed in all six control subjects, seven of eight subjects who received vaccine 1, and five of seven subjects who received vaccine 2. In contrast, only one of seven subjects who received vaccine 3 became infected (relative risk of infection, 0.14; 95 percent confidence interval, 0.02 to 0.88; P<0.005). CONCLUSIONS A recombinant vaccine based on fusion of the circumsporozoite protein and HBsAg plus a potent adjuvant can protect against experimental challenge with P. falciparum sporozoites. After additional studies of protective immunity and the vaccination schedule, field trials are indicated for this new vaccine against P. falciparum malaria.


The Lancet | 2004

Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial

Pedro L. Alonso; Jahit Sacarlal; John J. Aponte; Amanda Leach; Eusebio Macete; Jessica Milman; Inacio Mandomando; Bart Spiessens; Caterina Guinovart; Mateu Espasa; Quique Bassat; Pedro Aide; Opokua Ofori-Anyinam; Margarita M. Navia; Sabine Corachan; Marc Ceuppens; Marie-Claude Dubois; Marie-Ange Demoitié; Filip Dubovsky; Clara Menéndez; Nadia Tornieporth; W. Ripley Ballou; Ricardo Thompson; Joe Cohen

BACKGROUND Development of an effective malaria vaccine could greatly contribute to disease control. RTS,S/AS02A is a pre-erythrocytic vaccine candidate based on Plasmodium falciparum circumsporozoite surface antigen. We aimed to assess vaccine efficacy, immunogenicity, and safety in young African children. METHODS We did a double-blind, phase IIb, randomised controlled trial in Mozambique in 2022 children aged 1-4 years. The study included two cohorts of children living in two separate areas which underwent different follow-up schemes. Participants were randomly allocated three doses of either RTS,S/AS02A candidate malaria vaccine or control vaccines. The primary endpoint, determined in cohort 1 (n=1605), was time to first clinical episode of P falciparum malaria (axillary temperature > or =37.5 degrees C and P falciparum asexual parasitaemia >2500 per microL) over a 6-month surveillance period. Efficacy for prevention of new infections was determined in cohort 2 (n=417). Analysis was per protocol. FINDINGS 115 children in cohort 1 and 50 in cohort 2 did not receive all three doses and were excluded from the per-protocol analysis. Vaccine efficacy for the first clinical episodes was 29.9% (95% CI 11.0-44.8; p=0.004). At the end of the 6-month observation period, prevalence of P falciparum infection was 37% lower in the RTS,S/AS02A group compared with the control group (11.9% vs 18.9%; p=0.0003). Vaccine efficacy for severe malaria was 57.7% (95% CI 16.2-80.6; p=0.019). In cohort 2, vaccine efficacy for extending time to first infection was 45.0% (31.4-55.9; p<0.0001). INTERPRETATION The RTS,S/AS02A vaccine was safe, well tolerated, and immunogenic. Our results show development of an effective vaccine against malaria is feasible.


The Journal of Infectious Diseases | 2002

Protection of Humans against Malaria by Immunization with Radiation-Attenuated Plasmodium falciparum Sporozoites

Stephen L. Hoffman; Lucy M. L. Goh; Thomas C. Luke; Imogene Schneider; Thong P. Le; Denise L. Doolan; John B. Sacci; Patricia de la Vega; Megan Dowler; Chris Paul; Daniel M. Gordon; José A. Stoute; L. W. Preston Church; Martha Sedegah; D. Gray Heppner; W. Ripley Ballou; Thomas L. Richie

During 1989-1999, 11 volunteers were immunized by the bites of 1001-2927 irradiated mosquitoes harboring infectious sporozoites of Plasmodium falciparum (Pf) strain NF54 or clone 3D7/NF54. Ten volunteers were first challenged by the bites of Pf-infected mosquitoes 2-9 weeks after the last immunization, and all were protected. A volunteer challenged 10 weeks after the last immunization was not protected. Five previously protected volunteers were rechallenged 23-42 weeks after a secondary immunization, and 4 were protected. Two volunteers were protected when rechallenged with a heterologous Pf strain (7G8). In total, there was protection in 24 of 26 challenges. These results expand published findings demonstrating that immunization by exposure to thousands of mosquitoes carrying radiation-attenuated Pf sporozoites is safe and well tolerated and elicits strain-transcendent protective immunity that persists for at least 42 weeks.


The Lancet | 2001

Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial

Kalifa Bojang; Paul Milligan; Margaret Pinder; Laurence Vigneron; Ali Alloueche; Kent E. Kester; W. Ripley Ballou; David J. Conway; William H. H. Reece; Philip Gothard; Lawrence K. Yamuah; Martine Delchambre; Gerald Voss; Brian Greenwood; Adrian V. S. Hill; Keith P. W. J. McAdam; Nadia Tornieporth; Joe Cohen; Tom Doherty

BACKGROUND RTS,S/AS02 is a pre-erythrocytic malaria vaccine based on the circumsporozoite surface protein of Plasmodium falciparum fused to HBsAg, incorporating a new adjuvant (AS02). We did a randomised trial of the efficacy of RTS,S/AS02 against natural P. falciparum infection in semi-immune adult men in The Gambia. METHODS 306 men aged 18-45 years were randomly assigned three doses of either RTS,S/AS02 or rabies vaccine (control). Volunteers were given sulfadoxine/pyrimethamine 2 weeks before dose 3, and kept under surveillance throughout the malaria transmission season. Blood smears were collected once a week and whenever a volunteer developed symptoms compatible with malaria. The primary endpoint was time to first infection with P. falciparum. Analysis was per protocol. FINDINGS 250 men (131 in the RTS,S/AS02 group and 119 in the control group) received three doses of vaccine and were followed up for 15 weeks. RTS,S/AS02 was safe and well tolerated. P. falciparum infections occurred significantly earlier in the control group than the RTS,S/AS02 group (Wilcoxons test p=0.018). Vaccine efficacy, adjusted for confounders, was 34% (95% CI 8.0-53, p=0.014). Protection seemed to wane: estimated efficacy during the first 9 weeks of follow-up was 71% (46-85), but decreased to 0% (-52 to 34) in the last 6 weeks. Vaccination induced strong antibody responses to circumsporozoite protein and strong T-cell responses. Protection was not limited to the NF54 parasite genotype from which the vaccine was derived. 158 men received a fourth dose the next year and were followed up for 9 weeks; during this time, vaccine efficacy was 47% (4-71, p=0.037). INTERPRETATION RTS,S/AS02 is safe, immunogenic, and is the first pre-erythrocytic vaccine to show significant protection against natural P. falciparum infection.


The Lancet | 2005

Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial

Pedro L. Alonso; Jahit Sacarlal; John J. Aponte; Amanda Leach; Eusebio Macete; Pedro Aide; Betuel Sigaúque; Jessica Milman; Inacio Mandomando; Quique Bassat; Caterina Guinovart; Mateu Espasa; Sabine Corachan; Marc Lievens; Margarita M. Navia; Marie-Claude Dubois; Clara Menéndez; Filip Dubovsky; Joe Cohen; Ricardo Thompson; W. Ripley Ballou

BACKGROUND RTS,S/AS02A is a pre-erythrocytic stage malaria vaccine that provides partial protection against infection in malaria-naive adult volunteers and hyperimmune adults. A previous report showed that this vaccine reduced risk of clinical malaria, delayed time to new infection, and reduced episodes of severe malaria over 6 months in African children. An important remaining issue is the durability of protection against clinical disease in these children. METHODS We did a randomised, controlled, phase IIb trial of RTS,S/AS02A given at 0, 1, and 2 months in 2022 Mozambican children aged 1-4 years. We previously determined vaccine efficacy (VE) against clinical malaria in a double-blind phase that included study months 2.5-8.5 (VE(2.5-8.5)). We now report VE in a single-blind phase up to month 21 (VE(8.5-21)). The primary endpoint was time to first or only clinical episode of Plasmodium falciparum malaria (axillary temperature 37.5 degrees C and P falciparum asexual parasitaemia >2500 per microL) detected through a passive case detection system. We also determined VE for other case definitions and for episodes of severe malaria. This study is registered with the ClinicalTrials.gov identifier NCT00197041. FINDINGS During the single-blind phase, VE(8.5-21) was 28.9% (95% CI 8.4-44.8; p=0.008). At month 21, prevalence of P falciparum infection was 29% lower in the RTS,S/AS02A group than in the control (p=0.017). Considering the entire study period, VE(2.5-21) was 35.3% (95% CI 21.6-46.6; p<0.0001) and VE(2.5-21) for severe malaria was 48.6% (95% CI 12.3-71.0; p=0.02). INTERPRETATION These results show that RTS,S/AS02A confers partial protection in African children aged 1-4 years living in rural endemic areas against a range of clinical disease caused by P falciparum for at least 18 months, and confirm the potential of malaria vaccines to become credible control tools for public-health use.


The New England Journal of Medicine | 2008

Efficacy of RTS,S/AS01E Vaccine against Malaria in Children 5 to 17 Months of Age

Philip Bejon; John Lusingu; Ally Olotu; Amanda Leach; Marc Lievens; Johan Vekemans; Salum Mshamu; Trudie Lang; Jayne Gould; Marie-Claude Dubois; Marie-Ange Demoitié; Jean-Francois Stallaert; Preeti Vansadia; Terrell Carter; Patricia Njuguna; Ken Awuondo; Anangisye Malabeja; Omar Abdul; Samwel Gesase; Neema Mturi; Chris Drakeley; Barbara Savarese; Tonya Villafana; W. Ripley Ballou; Joe Cohen; Eleanor M. Riley; Martha M. Lemnge; Kevin Marsh; Lorenz von Seidlein

BACKGROUND Plasmodium falciparum malaria is a pressing global health problem. A previous study of the malaria vaccine RTS,S (which targets the circumsporozoite protein), given with an adjuvant system (AS02A), showed a 30% rate of protection against clinical malaria in children 1 to 4 years of age. We evaluated the efficacy of RTS,S given with a more immunogenic adjuvant system (AS01E) in children 5 to 17 months of age, a target population for vaccine licensure. METHODS We conducted a double-blind, randomized trial of RTS,S/AS01E vaccine as compared with rabies vaccine in children in Kilifi, Kenya, and Korogwe, Tanzania. The primary end point was fever with a falciparum parasitemia density of more than 2500 parasites per microliter, and the mean duration of follow-up was 7.9 months (range, 4.5 to 10.5). RESULTS A total of 894 children were randomly assigned to receive the RTS,S/AS01E vaccine or the control (rabies) vaccine. Among the 809 children who completed the study procedures according to the protocol, the cumulative number in whom clinical malaria developed was 32 of 402 assigned to receive RTS,S/AS01E and 66 of 407 assigned to receive the rabies vaccine; the adjusted efficacy rate for RTS,S/AS01E was 53% (95% confidence interval [CI], 28 to 69; P<0.001) on the basis of Cox regression. Overall, there were 38 episodes of clinical malaria among recipients of RTS,S/AS01E, as compared with 86 episodes among recipients of the rabies vaccine, with an adjusted rate of efficacy against all malarial episodes of 56% (95% CI, 31 to 72; P<0.001). All 894 children were included in the intention-to-treat analysis, which showed an unadjusted efficacy rate of 49% (95% CI, 26 to 65; P<0.001). There were fewer serious adverse events among recipients of RTS,S/AS01E, and this reduction was not only due to a difference in the number of admissions directly attributable to malaria. CONCLUSIONS RTS,S/AS01E shows promise as a candidate malaria vaccine. (ClinicalTrials.gov number, NCT00380393.)


The Journal of Infectious Diseases | 2009

Randomized, Double-Blind, Phase 2a Trial of Falciparum Malaria Vaccines RTS,S/AS01B and RTS,S/AS02A in Malaria-Naive Adults: Safety, Efficacy, and Immunologic Associates of Protection

Kent E. Kester; James F. Cummings; Opokua Ofori-Anyinam; Christian F. Ockenhouse; Urszula Krzych; Philippe Moris; Robert Schwenk; Robin Nielsen; Zufan Debebe; Evgeny Pinelis; Laure Y. Juompan; Jack Williams; Megan Dowler; V. Ann Stewart; Robert A. Wirtz; Marie-Claude Dubois; Marc Lievens; Joe Cohen; W. Ripley Ballou; D. Gray Heppner

BACKGROUND To further increase the efficacy of malaria vaccine RTS,S/AS02A, we tested the RTS,S antigen formulated using the AS01B Adjuvant System (GlaxoSmithKline Biologicals). METHODS In a double-blind, randomized trial, 102 healthy volunteers were evenly allocated to receive RTS,S/AS01B or RTS,S/AS02A vaccine at months 0, 1, and 2 of the study, followed by malaria challenge. Protected vaccine recipients were rechallenged 5 months later. RESULTS RTS,S/AS01B and RTS,S/AS02A were well tolerated and were safe. The efficacy of RTS,S/AS01B and RTS,S/AS02A was 50% (95% confidence interval [CI], 32.9%-67.1%) and 32% (95% CI, 17.6%-47.6%), respectively. At the time of initial challenge, the RTS,S/AS01B group had greater circumsporozoite protein (CSP)-specific immune responses, including higher immunoglobulin (Ig) G titers, higher numbers of CSP-specific CD4(+) T cells expressing 2 activation markers (interleukin-2, interferon [IFN]-gamma, tumor necrosis factor-alpha, or CD40L), and more ex vivo IFN-gamma enzyme-linked immunospots (ELISPOTs) than did the RTS,S/AS02A group. Protected vaccine recipients had a higher CSP-specific IgG titer (geometric mean titer, 188 vs 73 mug/mL; P < .001), higher numbers of CSP-specific CD4(+) T cells per 10(6) CD4(+) T cells (median, 963 vs 308 CSP-specific CD4(+) T cells/10(6) CD4(+) T cells; P < .001), and higher numbers of ex vivo IFN-gamma ELISPOTs (mean, 212 vs 96 spots/million cells; P < .001). At rechallenge, 4 of 9 vaccine recipients in each group were still completely protected. CONCLUSIONS The RTS,S/AS01B malaria vaccine warrants comparative field trials with RTS,S/AS02A to determine the best formulation for the protection of children and infants. The association between complete protection and immune responses is a potential tool for further optimization of protection. Trial registration. ClinicalTrials.gov identifier NCT00075049.


PLOS ONE | 2009

Blood Stage Malaria Vaccine Eliciting High Antigen-Specific Antibody Concentrations Confers No Protection to Young Children in Western Kenya

Bernhards Ogutu; Odika J. Apollo; Denise McKinney; Willis Okoth; Joram Siangla; Filip Dubovsky; Kathryn Tucker; John N. Waitumbi; Carter Diggs; Janet Wittes; Elissa Malkin; Amanda Leach; Lorraine Soisson; Jessica Milman; Lucas Otieno; Carolyn A. Holland; Mark E. Polhemus; Shon Remich; Christian F. Ockenhouse; Joe Cohen; W. Ripley Ballou; Samuel K. Martin; Evelina Angov; V. Ann Stewart; Jeffrey A. Lyon; D. Gray Heppner; Mark R. Withers

Objective The antigen, falciparum malaria protein 1 (FMP1), represents the 42-kDa C-terminal fragment of merozoite surface protein-1 (MSP-1) of the 3D7 clone of P. falciparum. Formulated with AS02 (a proprietary Adjuvant System), it constitutes the FMP1/AS02 candidate malaria vaccine. We evaluated this vaccines safety, immunogenicity, and efficacy in African children. Methods A randomised, double-blind, Phase IIb, comparator-controlled trial.The trial was conducted in 13 field stations of one mile radii within Kombewa Division, Nyanza Province, Western Kenya, an area of holoendemic transmission of P. falciparum. We enrolled 400 children aged 12–47 months in general good health.Children were randomised in a 1∶1 fashion to receive either FMP1/AS02 (50 µg) or Rabipur® rabies vaccine. Vaccinations were administered on a 0, 1, and 2 month schedule. The primary study endpoint was time to first clinical episode of P. falciparum malaria (temperature ≥37.5°C with asexual parasitaemia of ≥50,000 parasites/µL of blood) occurring between 14 days and six months after a third dose. Case detection was both active and passive. Safety and immunogenicity were evaluated for eight months after first immunisations; vaccine efficacy (VE) was measured over a six-month period following third vaccinations. Results 374 of 400 children received all three doses and completed six months of follow-up. FMP1/AS02 had a good safety profile and was well-tolerated but more reactogenic than the comparator. Geometric mean anti-MSP-142 antibody concentrations increased from1.3 µg/mL to 27.3 µg/mL in the FMP1/AS02 recipients, but were unchanged in controls. 97 children in the FMP1/AS02 group and 98 controls had a primary endpoint episode. Overall VE was 5.1% (95% CI: −26% to +28%; p-value = 0.7). Conclusions FMP1/AS02 is not a promising candidate for further development as a monovalent malaria vaccine. Future MSP-142 vaccine development should focus on other formulations and antigen constructs. Trial Registration Clinicaltrials.gov NCT00223990


The Journal of Infectious Diseases | 2001

Efficacy of Recombinant Circumsporozoite Protein Vaccine Regimens against Experimental Plasmodium falciparum Malaria

Kent E. Kester; Denise A. McKinney; Nadia Tornieporth; Christian F. Ockenhouse; D. Gray Heppner; Ted Hall; Urszula Krzych; Martine Delchambre; Gerald Voss; Megan Dowler; Jolie Palensky; Janet Wittes; Joe Cohen; W. Ripley Ballou

After initial successful evaluation of the circumsporozoite-based vaccine RTS,S/SBAS2, developed by SmithKline Beecham Biologicals with the Walter Reed Army Institute of Research, protective efficacy of several regimens against Plasmodium falciparum challenge was determined. A controlled phase 1/2a study evaluated 1 or 2 standard doses of RTS,S/SBAS2 in 2 groups whose members received open-label therapy and 3 immunizations in blinded groups who received standard, one-half, or one-fifth doses. RTS,S/SBAS2 was safe and immunogenic in all groups. Of the 41 vaccinees and 23 control subjects who underwent sporozoite challenge, malaria developed in 7 of 10 who received 1 dose, in 7 of 14 who received 2 doses, in 3 of 6 who received 3 standard doses, in 3 of 7 who received 3 one-half doses, in 3 of 4 who received 3 one-fifth doses, and in 22 of 23 control subjects. Overall protective efficacy of RTS,S/SBAS2 was 41% (95% confidence interval, 22%-56%; P=.0006). This and previous studies have shown that 2 or 3 doses of RTS,S/SBAS2 protect against challenge with P. falciparum sporozoites.


The Lancet | 2007

Safety of the RTS,S/AS02D candidate malaria vaccine in infants living in a highly endemic area of Mozambique: a double blind randomised controlled phase I/IIb trial

John J. Aponte; Pedro Aide; Montse Renom; Inacio Mandomando; Quique Bassat; Jahit Sacarlal; M Nelia Manaca; Sarah Lafuente; Arnoldo Barbosa; Amanda Leach; Marc Lievens; Johan Vekemans; Betuel Sigaúque; Marie-Claude Dubois; Marie-Ange Demoitié; Marla Sillman; Barbara Savarese; John G McNeil; Eusebio Macete; W. Ripley Ballou; Joe Cohen; Pedro L. Alonso

BACKGROUND Malaria remains a leading global health problem that requires the improved use of existing interventions and the accelerated development of new control methods. We aimed to assess the safety, immunogenicity, and initial efficacy of the malaria vaccine RTS,S/AS02D in infants in Africa. METHODS We did a phase I/IIb double-blind randomised trial of 214 infants in Mozambique. Infants were randomly assigned to receive three doses either of RTS,S/AS02D or the hepatitis B vaccine Engerix-B at ages 10 weeks, 14 weeks, and 18 weeks of age, as well as routine immunisation vaccines given at 8, 12, and 16 weeks of age. The primary endpoint was safety of the RTS,S/AS02D during the first 6 months of the study, and analysis was by intention to treat. Secondary endpoints included immunogenicity and analysis of new Plasmodium falciparum infections during a 3-month follow up after the third dose. Time to new infections in the per-protocol cohort were compared between groups using Cox regression models. This study is registered with ClinicalTrials.gov, number NCT00197028. FINDINGS There were 17 children (15.9%; 95% CI 9.5-24.2) with serious adverse events in each group. In the follow-up which ended on March 6, 2007, there were 31 serious adverse events in the RTS,S/AS02D group and 30 serious adverse events in the Engerix-B group, none of which were reported as related to vaccination. There were four deaths during this same follow-up period; all of them after the active detection of infection period had finished at study month 6 (two in RTSS/AS02D group and two in the Engerix-B group). RTS,S/AS02D induced high titres of anti-circumsporozoite antibodies. 68 first or only P falciparum infections were documented: 22 in the RTS,S/AS02D group and 46 in the control group. The adjusted vaccine efficacy was 65.9% (95% CI 42.6-79.8%, p<0.0001). INTERPRETATION The RTS,S/AS02D malaria vaccine was safe, well tolerated, and immunogenic in young infants. These findings set the stage for expanded phase III efficacy studies to confirm vaccine efficacy against clinical malaria disease.

Collaboration


Dive into the W. Ripley Ballou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Gray Heppner

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Kent E. Kester

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian F. Ockenhouse

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Urszula Krzych

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge