Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where W. Ross Tracey is active.

Publication


Featured researches published by W. Ross Tracey.


Journal of Biological Chemistry | 2003

Isozyme-nonselective N-Substituted Bipiperidylcarboxamide Acetyl-CoA Carboxylase Inhibitors Reduce Tissue Malonyl-CoA Concentrations, Inhibit Fatty Acid Synthesis, and Increase Fatty Acid Oxidation in Cultured Cells and in Experimental Animals

H. James Harwood; Stephen F. Petras; Lorraine D. Shelly; Lawrence M. Zaccaro; David Austen Perry; Michael Raymond Groton Makowski; Diane M. Hargrove; Kelly A. Martin; W. Ross Tracey; Justin Chapman; William P. Magee; Deepak K. Dalvie; Victor F. Soliman; William H. Martin; Christian J. Mularski; Shane A. Eisenbeis

Inhibition of acetyl-CoA carboxylase (ACC), with its resultant inhibition of fatty acid synthesis and stimulation of fatty acid oxidation, has the potential to favorably affect the multitude of cardiovascular risk factors associated with the metabolic syndrome. To achieve maximal effectiveness, an ACC inhibitor should inhibit both the lipogenic tissue isozyme (ACC1) and the oxidative tissue isozyme (ACC2). Herein, we describe the biochemical and acute physiological properties of CP-610431, an isozyme-nonselective ACC inhibitor identified through high throughput inhibition screening, and CP-640186, an analog with improved metabolic stability. CP-610431 inhibited ACC1 and ACC2 with IC50s of ∼50 nm. Inhibition was reversible, uncompetitive with respect to ATP, and non-competitive with respect to bicarbonate, acetyl-CoA, and citrate, indicating interaction with the enzymatic carboxyl transfer reaction. CP-610431 also inhibited fatty acid synthesis, triglyceride (TG) synthesis, TG secretion, and apolipoprotein B secretion in HepG2 cells (ACC1) with EC50s of 1.6, 1.8, 3.0, and 5.7 μm, without affecting either cholesterol synthesis or apolipoprotein CIII secretion. CP-640186, also inhibited both isozymes with IC50sof ∼55 nm but was 2–3 times more potent than CP-610431 in inhibiting HepG2 cell fatty acid and TG synthesis. CP-640186 also stimulated fatty acid oxidation in C2C12 cells (ACC2) and in rat epitrochlearis muscle strips with EC50s of 57 nm and 1.3 μm. In rats, CP-640186 lowered hepatic, soleus muscle, quadriceps muscle, and cardiac muscle malonyl-CoA with ED50s of 55, 6, 15, and 8 mg/kg. Consequently, CP-640186 inhibited fatty acid synthesis in rats, CD1 mice, and ob/ob mice with ED50s of 13, 11, and 4 mg/kg, and stimulated rat whole body fatty acid oxidation with an ED50 of ∼30 mg/kg. Taken together, These observations indicate that isozyme-nonselective ACC inhibition has the potential to favorably affect risk factors associated with the metabolic syndrome.


Cardiovascular Research | 1997

Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart

W. Ross Tracey; William P. Magee; Hiroko Masamune; Scott P. Kennedy; Delvin R. Knight; R. Allan Buchholz; Roger J. Hill

OBJECTIVE The aim of this study was to determine whether selective activation of the adenosine A3 receptor reduces infarct size in a Langendorff model of myocardial ischemia-reperfusion injury. METHODS Buffer-perfused rabbit hearts were exposed to 30 min regional ischemia and 120 min of reperfusion. Infarct size was measured by tetrazolium staining and normalized for area-at-risk (IA/AAR). RESULTS Preconditioning by 5 min global ischemia and 10 min reperfusion reduced infarct size (IA/AAR) to 19 +/- 4% (controls: 67 +/- 5%). Replacing global ischemia with 5 min perfusion of the rabbit A3-selective agonist, IB-MECA (A3 Ki: 2 nM; A1 Ki: 30 nM) elicited a concentration-dependent reduction in infarct size; 50 nM IB-MECA reduced IA/AAR to 24 +/- 4%. The A1-selective agonist, R-PIA (25 nM) reduced IA/AAR to a similar extent (21 +/- 6%). However, while the cardioprotective effect of R-PIA was significantly inhibited (54 +/- 7% IA/AAR) by the rabbit A1-selective antagonist, BWA1433 (50 nM), the IB-MECA-dependent cardioprotection was unaffected (28 +/- 6% IA/AAR). A non-selective (A1 vs. A3) concentration of BWA1433 (5 microM) significantly attenuated the IB-MECA-dependent cardioprotection (61 +/- 7% IA/AAR). CONCLUSIONS These data clearly demonstrate that selective A3 receptor activation provides cardioprotection from ischemia-reperfusion injury in the rabbit heart. Furthermore, the degree of A3-dependent cardioprotection is similar to that provided by A1 receptor stimulation or ischemic preconditioning.


Bioorganic & Medicinal Chemistry Letters | 2001

Discovery of zoniporide: A potent and selective sodium–hydrogen exchanger type 1 (NHE-1) inhibitor with high aqueous solubility

Angel Guzman-Perez; Ronald Thure Wester; Mary C. Allen; Janice A. Brown; Allan R. Buchholz; Ewell R. Cook; Wesley W. Day; Ernest Seiichi Hamanaka; Scott P. Kennedy; Delvin R. Knight; Paul J. Kowalczyk; Ravi B. Marala; Christian J. Mularski; William Albert Novomisle; Roger Benjamin Ruggeri; W. Ross Tracey; Roger J. Hill

Zoniporide (CP-597,396) is a potent and selective inhibitor of NHE-1, which exhibits high aqueous solubility and acceptable pharmacokinetics for intravenous administration. The discovery, synthesis, activities, and rat and dog pharmacokinetics of this compound are presented. The potency and selectivity of zoniporide may be due to the conformation that the molecule adopts due to the presence of a cyclopropyl and a 5-quinolinyl substituent on the central pyrazole ring of the molecule.


European Journal of Pharmacology | 2002

A Novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin reduces myocardial ischemic injury

Justin Chapman; William P. Magee; Hans Stukenbrok; Gretchen E Beckius; Anthony J. Milici; W. Ross Tracey

The efficacy of a novel, nonpeptidic, caspase 3/7-selective inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin (MMPSI) for reducing ischemic injury in isolated rabbit hearts or cardiomyocytes was evaluated. MMPSI (0.1-10 microM) evoked a concentration-dependent reduction in infarct size (up to 56% vs. control; IC(50)=0.2 microM). Furthermore, apoptosis (DNA laddering, soluble nucleosomes) was reduced in the ischemic area-at-risk. MMPSI inhibited recombinant human caspase-3 with an IC(50)=1.7 microM. Apoptosis in H9c2 cells after 16-h simulated ischemia and 2-h simulated reperfusion was significantly reduced by MMPSI in a concentration-dependent manner (IC(50)=0.5 microM); similar effects were observed in isolated adult rabbit cardiomyocytes (IC(50)=1.5 microM). These data support an important role for caspase-3/7 in mediating myocardial ischemic injury. Furthermore, these data indicate that cardioprotection via caspase-3/7 inhibition is attainable via a small molecule (nonpeptidic) inhibitor, a necessary step in making this approach therapeutically viable.


Histochemistry and Cell Biology | 1997

Relationships between NADPH diaphorase staining and neuronal, endothelial, and inducible nitric oxide synthase and cytochrome P450 reductase immunoreactivities in guinea-pig tissues

Heather M. Young; Anna O'Brien; John B. Furness; D. Ciampoli; James P. Hardwick; Timothy J. McCabe; Ramani Narayanasami; Bettie Sue Siler Masters; W. Ross Tracey

Abstract The presence of NADPH diaphorase staining was compared with the immunohistochemical localization of four NADPH-dependent enzymes – neuronal (type I), inducible (type II), and endothelial (type III) nitric oxide synthase (NOS) and cytochrome P450 reductase. Cell types that were immunoreactive for the NADPH-dependent enzymes were also stained for NADPH diaphorase, suggesting that endothelial and neuronal NOS and cytochrome P450 reductase all show NADPH diaphorase activity in formaldehyde-fixed tissue. However, in some tissues, the presence of NADPH diaphorase staining did not coincide with the presence of any of the NADPH-dependent enzymes we examined. In vascular endothelial cells, the punctate pattern of staining observed with NADPH diaphorase histochemistry was identical to that seen following immunohistochemistry using antibodies to endothelial NOS. In enteric and pancreatic neurons and in skeletal muscle, the presence of NADPH diaphorase staining correlated with the presence of neuronal NOS. In the liver, sebaceous glands of the skin, ciliated epithelium, and a subpopulation of the cells in the subserosal glands of the trachea, zona glomerulosa of the adrenal cortex, and epithelial cells of the lacrimal and salivary glands, the presence of NADPH diaphorase staining coincided with the presence of cytochrome P450 reductase immunoreactivity. In epithelial cells of the renal tubules and zona fasciculata and zona reticularis of the adrenal cortex, NADPH diaphorase staining was observed that did not coincide with the presence of any of the enzymes. Inducible NOS was not observed in any tissue. Thus, while tissues that demonstrate immunoreactivity for neuronal and endothelial NOS also stain positively for NADPH diaphorase activity, the presence of NADPH diaphorase staining does not reliably or specifically indicate the presence of one or more NOS isoforms.


European Journal of Pharmacology | 2002

Zoniporide: a potent and highly selective inhibitor of human Na(+)/H(+) exchanger-1.

Ravi B. Marala; Janice A. Brown; Jimmy Kong; W. Ross Tracey; Delvin R. Knight; Ronald Thure Wester; Dexue Sun; Scott P. Kennedy; Ernest Seiichi Hamanaka; Roger Benjamin Ruggeri; Roger J. Hill

We evaluated the in vitro pharmacological profile of a novel, potent and highly selective Na(+)/H(+) exchanger-1 (NHE-1) inhibitor, [1-(Quinolin-5-yl)-5-cyclopropyl-1H-pyrazole-4-carbonyl]guanidine hydrochloride monohydrate (zoniporide or CP-597,396). The potency and selectivity of zoniporide were determined via inhibition of 22Na(+) uptake by PS-120 fibroblast cell lines overexpressing human NHE-1, -2 or rat NHE-3. Additionally, potency for endogenous NHE-1 was confirmed via ex vivo human platelet swelling assay (PSA), in which platelet swelling was induced by exposure to sodium propionate. The pharmacological profile of zoniporide was compared with that of eniporide and cariporide. Zoniporide inhibited 22Na(+) uptake in fibroblasts expressing human NHE-1 in a concentration-dependent manner (IC(50) = 14 nM) and was highly selective (157-fold and 15,700-fold vs. human NHE-2 and rat NHE-3, respectively). Zoniporide was 1.64- to 2.6-fold more potent at human NHE-1 than either eniporide or cariporide (IC(50) = 23 and 36 nM, respectively). Zoniporide was also more selective at inhibiting human NHE-1 vs. human NHE-2 than either eniporide or cariporide (157-fold selective compared with 27- and 49-fold, respectively). All three compounds inhibited human platelet swelling with IC(50) values in low nanomolar range. From these results, we conclude that zoniporide represents a novel, potent and highly selective NHE-1 inhibitor.


British Journal of Pharmacology | 2004

Cardioprotective efficacy of zoniporide, a potent and selective inhibitor of Na+/H+ exchanger isoform 1, in an experimental model of cardiopulmonary bypass

Hugh Clements-Jewery; Fiona J. Sutherland; Mary C. Allen; W. Ross Tracey; Metin Avkiran

We determined (1) the inhibitory potency of zoniporide against the native Na+/H+ exchanger isoform 1 (NHE1) that is expressed in adult rat ventricular myocytes and platelets, and (2) the cardioprotective efficacy of zoniporide in isolated, blood‐perfused adult rat hearts subjected to cardioplegic arrest, hypothermic ischaemia (150 min at 25°C) and normothermic reperfusion (60 min at 37°C). In isolated myocytes, in which NHE1 activity was determined directly by measurement of H+ efflux rate following intracellular acidification, zoniporide produced a dose‐dependent inhibition of such activity (IC50 73 nM at 25°C). A comparable NHE1‐inhibitory potency was retained at 37°C. In platelets, in which the rate of cell swelling was used as a surrogate index of NHE1 activity, this was again inhibited by zoniporide (IC50 67 nM at 25°C). In the isolated heart model, administration of zoniporide (loading bolus of 1 mg kg−1 i.v. plus continuous infusion at 1.98 mg kg−1 h−1 i.v.) to the support animal achieved a free plasma drug concentration of 1 μM. At this dose, zoniporide afforded significant cardioprotective benefit relative to vehicle treatment, with improved preservation of left ventricular end‐diastolic and developed pressures and coronary perfusion pressure during reperfusion. Myocardial myeloperoxidase activity was also attenuated by zoniporide treatment, indicating reduced neutrophil accumulation. These data show that zoniporide (1) is a potent inhibitor of native NHE1 activity in ventricular myocytes and platelets, and (2) affords significant cardioprotective benefit during ischaemia and reperfusion in an experimental model that mimics several distinctive features of human cardioplegic arrest with cardiopulmonary bypass.


Circulation | 2008

Letter by Tracey regarding article, "Bypassing big pharma".

W. Ross Tracey

To the Editor: As a pharmaceutical industry scientist who has both spent many years trying to identify effective therapies for myocardial ischemic injury and been involved in past collaborations with Drs Downey and Cohen, I was disappointed by the tone of their recent editorial.1 The authors describe the reality of drug discovery: that identifying novel therapies is inherently risky and that numerous approaches unfortunately more often lead to failure than success. Whereas …


Journal of Pharmacology and Experimental Therapeutics | 2001

A Novel Sodium-Hydrogen Exchanger Isoform-1 Inhibitor, Zoniporide, Reduces Ischemic Myocardial Injury in Vitro and in Vivo

Delvin R. Knight; Andrew H. Smith; David M. Flynn; Joseph T. MacAndrew; Suzanne S. Ellery; Jimmy Kong; Ravi B. Marala; Ronald Thure Wester; Angel Guzman-Perez; Roger J. Hill; William P. Magee; W. Ross Tracey


Cardiovascular Research | 1998

Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5′-N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation

W. Ross Tracey; William P. Magee; Hiroko Masamune; Joseph J. Oleynek; Roger J. Hill

Collaboration


Dive into the W. Ross Tracey's collaboration.

Top Co-Authors

Avatar

William P. Magee

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Ravi B. Marala

East Carolina University

View shared research outputs
Researchain Logo
Decentralizing Knowledge